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Parallel Model and 170 Model




Parallel Model

Shared-memory multi-core setting, using fork-join
parallelism assuming binary-forking. fork

Work-span model
e Work: total number of operations (sequential time).

* Span/depth: longest dependence chain (parallel
time).

Work-efficient: work asymptotically the same as the join
best sequential algorithm.




1/0 Model

Two levels
* A fast memory of fixed size M (small).
* A slow memory of unbounded size (large).

Two types of memory transfer
* Read: load a block from slow memory
e Write: write a block to the slow memory

The 1/0 complexity of an algorithm is:
# (read transfer) + # (write transfer)

Fast Memory Slow Memory
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kd-tree




kd-tree

A spatial partition data structure to manage points in the geometric space.
* Recursively splits the region in the median.




kd-tree

A spatial partition data structure to manage points in the geometric space.
* Recursively splits the region in the median.

* Every internal node represents a sub-region.

* Every leaf contain a single point.
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Build a kd-tree

1. Find the median of the inputs. |

2. Partition into two parts ©
| . pars Co o © ©

3. Recursive. O ]
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Why kd-tree ?

* Linear space
* Simple algorithms
e Comparison based
* Resistant to skewed data
 Scale to reasonably large dimension (D = 10)

e Support wide range of queries




Challenge 1: dynamic kd-tree

To insert or delete points from the tree.

kd-tree is generally considered to be a static structure.
* Keep it fully balanced to ensure the query efficiency.

* Require rebuilding the whole tree after updates.
E.g. Bentely[CACM’ 75], Agarwal[PODS’ 16], CGAL[CGAL 20], Bhl-tree[SIGMOD’ 22] ...

Alternatively, handle updates using logarithmic methods.
* Decompose a single kd-tree into O(log n) static kd-trees.
e Update starts from small trees.

* Faster update but slower on query.
E.g. Bentely[IPL 79], Bkd-tree[SSTD’ 03], Agarwal[PSCG’ 03], Log-tree[SIGMOD’ 22] ...

Challenges:
Achieve fast update, meanwhile guarantee the query efficiency.

Bentely [CACM’ 75]: Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975), 509-517.

Agarwal [PODS’ 16]: Pankaj Agarwal, Kyle Fox, Kamesh Munagala, and Abhinandan Nath. 2016. Parallel algorithms for constructing range and nearest-neighbor searching data structures. In Principles of Database Systems (PODS). 429-440.

CGAL [CGAL’ 20]: The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/Manual/packages.html.

Log-tree [SIGMOD’ 22]: Yigiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).

Bentely [IPL’ 79]: Jon Louis Bentley. 1979. Decomposable searching problems. Inform. Process. Lett. 8, 5 (1979), 244-251.

Bkd-tree [SSTD’ 03]: Octavian Procopiuc, Pankaj K Agarwal, Lars Arge, and Jeffrey Scott Vitter. 2003. Bkd-tree: A dynamic scalable kd-tree. In International Symposium on Spatial and Temporal Databases (SSTD). Springer, 46—65.

Agarwal [PSCG’ 03]: Pankaj K Agarwal,Lars Arge, Andrew Danner, and Bryan Holland-Minkley. 2003. Cache-oblivious data structures for orthogonal range searching. In Proceedings of the nineteenth annual symposium on Computational geometry. 237-245.
Bhl-tree [SIGMOD’ 22]: Yigiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).



https://doc.cgal.org/5.1/Manual/packages.html

Challenge 2: static kd-tree algorithms

Even for the static kd-tree, we are unaware of kd-tree algorithm that is
highly parallel and 1/0 efficient.

1. Find the@xact medianof the inputs.
2. Partition into two parts.

3. Recursive.

* Required by a fully balanced tree.
 High 1/0 cost.
* Enforce the algorithm proceeds level-by-level.

Prevents the algorithm to be highly parallel and 1/0 efficient.




Our contribution

Propose the Pkd-tree (Parallel kd-tree) that is highly parallel, 1/O-efficient, and
can support efficient updates.

1. Build a slightly unbalanced tree, achieve a construction algorithm that
optimizes work, span and 1I/O complexity.
* Height:logn + 0(1),
* Not affect the existing query bound.

2. A reconstruction-based update algorithm that guarantees the tree to be
weight-balanced.

3. A highly efficient parallel implementation.

Close the long-standing gap between the wide usage of kd-trees and lack of a
highly efficient parallel implementation.




Parallel tree construction




Parallel kd-tree

Serial construction The plain parallel algorithm

1. Find the median
2. Partition points
3. Recursive

Parallel median
Parallel partition
Parallel recursive

11

O(nlogn) 0 (nlog n) work

0(log? n) span
[0(% logn) /0 co;nplexity]
* Sorting is O(ElogMn).
* 1/0 inefficient!

E.g., for OSM [PC’08] with 1.2 billion points:

* The plain parallel algorithm: 56.6s
* Ours: 5.08s

OSM [PC’08]: Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated street maps. IEEE Pervasive computing 7, 4 (2008), 12-18.

Does it look familiar?
* Quick Sort!

e Sorting time is a lower bound for
kd-tree construction.




Observations

The plain parallel algorithm

Parallel median
Parallel partition
Parallel recursive

1. Build a fully balanced tree.
* log n tree height, ensure the query bound.
* Find the exact median (high cost).

2. Build one level at once.
* Find median and partition in each level.
* More 1I/O needed.




Our ideas

Convention

1. Build a fully balanced tree
* log n tree height

* Find the exact median

2. Build one level at once
* Find median and partition in each level
* More 1/O needed

Our ideas

1. A slightly unbalanced tree.

* logn + 0(1) tree height.

* Use samples to estimate the median.

2. Build multiple levels at once
* One round of data movement is sufficient.

* 1/0 efficient points sieving algorithm to
partition points.




Our parallel tree construction (sketch)

(1. Take sufficient samples. A
2. Pick the median from samples.

@. Construct multiple levels of tree at once.
4. Sieving points to the corresponding sub-trees.
5. Parallel recurse.




Sampling and build multiple levels

1. Take sufficient samples.
2. Pick the median in samples. } Serial

3. Build multiple levels at once.
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Sample size

1. Takeamples. } |
Seria

2. Pick the median in samples.
3. Build multiple levels at once.

Intuition
* Less samples - faster, may break the tree height bound.
* More samples - slower, yet better tree height guarantee.

Lemma 3.2
Given over-sampling rate o, the total height of Pkd-tree with size n is

* O(logn)ifo=Q(logn),
« logn+0(1)ifo =Q(log3n).




Our parallel tree construction

1. Take sufficient samples. h

2. Pick the median from samples.
é. Construct multiple levels of tree at once. Y

4. Sieving points to the corresponding sub-trees.

5. Parallel recurse.




Parallel Points Sieving

Remaining task:
 Distribute points into corr
* Known as the parallel poij

y




Parallel points sieving

Formally, we want to
* rearrange the input array to make points in same bucket being contiguous

Input

a b
Bucket 0 2

d e f g h i ;; Qutput a g d f i b e ¢ h
121031 Bucket 0 0 1 1 1 2 2 3 3
. J\ J \ Ju . J

| | | |

C
3

Trivial in the serial setting.
Parallel is hard.
* Avoid data race, e.g., avoid write two points to same position at same time.

* Keep 1/0 efficiency, e.g., write every point directly to its destination.

We borrow ideas from the cache-efficient parallel sorting [SPAA’ 20].

Cache-efficient sieving [SPAA’23]: Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)..



Parallel points sieving

High-level ideas

1.
2.

Divide the input array into chunks.

Parallel for each chunk:

- Count number of points in every bucket.

- Store answer in array B.

Perform column major prefix sum on B.

Parallel for each chunk:

- Write each point to the destination.

Chunk0 Chunk1 Chunk?2

Input a b c|ld e f|lg h i
Bucket 0 2 3|11 2 1|0 3 1
Count points Bucket
in each bucket B 0123
<0/1011
21|10 2 10
“2/1101
Column major Bucket
prefix sum B 01 2 3
x 0|0 2 5 7
3 1(1 2 6 8
Write to © 2|1 4 7 8
destination
Qutput a g d f i b e ¢ h
Bucket 0 0 1 1 1 2 2 3 3




Our parallel tree construction

\

Take sufficient samples.

Pick the median from samples. _
Tree height:

. S—
Construct multiple levels of tree at once. logn + 0(1)

Sieving points to the corresponding sub-trees.

LA S

Parallel recurse.

Work O(nlogn) O(nlogn)
Span 0(log? n) 0(M¢logyn)

n n
1/O O(Elog n) \_ o (ElogMn) )




Batch updates




Batch updates

Insert batch points to leaves / remove batch points from leaves

Parallel .
)

CGAL : Fully
[CGAL 20] Single balanced |
~— Slow update _
e . Fully Can we achieve
[SIGMOD’ 22] ¢ \_balanced / =) fast update &
. o fast query?
Log-tree [Loga”thm'c] ) = Slow query
[SIGMOD’ 22] method




Batch updates

Insert batch points to leaves / remove batch points from leaves

Parallel .
)

CGAL : Fully
[CGAL 20] Sl balanced |
~ Slow update ,
BHL-tree S Fully Can we achieve
[SIGMOD’ 22] ® \_balanced / smm) fast update &
__ — fast query?
Log-tree [Logarlthmlc] _ > Slow query
[SIGMOD’ 22] method _
Pkd-tree Single

Fast query Fast update




Weight-balanced scheme

Invariant:
Two subtrees can be off from perfectly balanced by a factorof o, 0 < a < 1.

L

imbalance ratio

1—a)-n

During batch updates, compared with a fully balanced tree:

* Less rebuilds needed @

 May reduce the query efficiency @
The behavior is controlled by the imbalance ratio a, more flexible!




Handling of imbalance

Some weight-balanced trees
e can use rotate to re-balance in the amortized constant time.
* e.g., AVL-tree, Red-black tree.

kd-tree does not support rotation, as tree nodes represent nested regions.

* Instead rebuild the whole tree, one can only rebuild the imbalanced sub-tree.
 Known as partial rebuild [MHO’ 1983].

* Drawback: still needs to perform rebuild after each updates.

Our idea:
Use the partial rebuild scheme to maintain a weight-balanced tree.

Partial rebuild [MHO’ 75]: Mark H Overmars. 1983. The design of dynamic data structures. Vol. 156. Springer Science & Business Media.



Batch insert

(y,6)




Batch insert

1. Fetch the skeleton.

2. Sieve the insertion points to the bucket.

3. In parallel:

* Rebuild imbalanced sub-trees; ¥

e Recurse on other buckets.
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Batch updates bounds

1. Fetch the skeleton.
2. Sieve the insertion points to the bucket.

3. In parallel:
* Rebuild imbalanced sub-trees; // Amortized to tree nodes visit

e Recurse on other buckets.

Using m = O(n) the batch size
* 0(log?n) span,
 0(log?n) work per element,

* O(log (%) + (log nlogyn)/B), 1/0O cost per element.




Experiments




Implementation

Reduce the memory usage of tree

 Remove everything that is unnecessary, i.e., the bounding box.

* Query needs to take a bounding box from root and compute new ones on-the-fly.
* Drawback: less prune efficiency when dimension is high.

We use standard query algorithms for single kd-trees.
Parameters

* Build 6 levels at once.
* Allow the sub-trees’ weight to be off by at most 30% (a = 0. 3).




Experiments

Setting
* Use machine with 96 Cores and 1.5 TB RAM.
* Implemented using C++, using ParlayLib [SPAA’ 20] for parallelism.

Benchmarks

* Uniform: points are uniformly distributed within a cube.
* Varden: points have very skewed distribution.

* Real-word graphs: scaling to dimension 10 and billions size.

Parlay [SPAA’ 20]: Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib — a toolkit for parallel algorithms on shared-memory multicore machines. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 507-509.



Baselines

Farallel Layout Construction Batch Insert Batch Delete
kd-tree
[ 1
CGAL : : : :
] [CGAL’ 20] Single Plain Rebuild whole tree Serial Delete J
[ 1
BHL-tree : : : :
[SIGMOD’ 22] Single Plain Rebuild whole tree  Rebuild whole tree
\ J
é L th o Y
Log-tree ogarithmic . . )
[SIGMOD’ 22] method Plain Merge and rebuild Merge and rebuild
\ J
I Partial Partial
Pkd-tree Single 1/0 efficient artial artiat
reconstruction reconstruction
\ J

CGAL [CGAL’ 20]: The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/Manual/packages.html.

Log-tree [SIGMOD’ 22]: Yigiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).
Bhl-tree [SIGMOD’ 22]: Yigiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).



https://doc.cgal.org/5.1/Manual/packages.html

Tree construction

Bench Construction
ench. D 2 3 5 9 HA =6, sampling ¥ A = 1, sampling |- A = 1, no sampling
Ours 3.15 3.65 567 9.66| _d\_____ -
Uniform Log-tree | 379 454 58.0 927 £ 7
100oM BHL-tree | 31.7 405 584 104 2 E0
CGAL | 1147 1079 1217 1412 § ;—:é 4
— (&)
Ours 3.66 4.78 6.27 11.2| € 24'1 £ o
Varden Log-tree | 342 41.8 57.8 926 S1--- S1
1000M BHL-tree | 30.2 392 587 104 Uniform  Varden Uniform  Varden
CGAL | 429 390 372 438 S

Magnitudes faster Cache optimization is important




Batch update

Batch deletion, Uniform Batch deletion, Varden BatCh DEIEtion

" “y Serial deletion, slower for large batc

o Ous A Logtree 4 BHLuee ¥ CGAL Batch Insertion
Batch insertion, Uniform Batch insertion, Varden ’ SlOW rebuild the whole tree
Ho-000- 000 oS X < Rebuild large buffer trees incurs
5 more time - line jumps
ﬁ 1 IIIIIIII [] IIIIIIII 15 1 IIIIIIII [ | IIIIIII
'g 0.1 1 10 100 1000 0.1 1 10 100 1000
2
c
£
|_

Rebuild the whole tree, stable

0.1 1 10 100 1000 0.1 1 10 100 1000
Batch size ( x 1M)

Tree size is 1000M, lower is better




KNN

© Ours 4 Log-tree <> BHL-tree 3 CGAL

% _ Uniform Varden Query 0(10g n) trees,
? 10— 10.0 slow.
i) c c
g : == Single tree, similar time.
c L 1.0 =
o E
3 1- 3 4 I Slightly faster due to
s C 01— smaller memory footprint.
£ - E
= k=1 k=10 k=100 k=1 k=10 k=100
k-NN search

Tree size is 1000M, query size is 10M. Lower is better




Imbalance

How the imbalance ratio a impact the update time and query time
 Smaller & - more tolerance of imbalance, less rebuild time and slower query;
* Larger & - more balance required, more rebuild time and faster query;

Design of experiments

* Construct a tree by inserting 1000 batches one-by-one. Batch size is 1M.
* Perform 10-NN query after each insertion.

* Test for two distributions: the skewed one and the uniform.




Imbalance - Updates

How the imbalance ratio a impact the update time and query time
 Smaller & & query more balance required, more rebuild time and faster query;
e Larger a - more tolerance of imbalance, less rebuild time and slower;

Frequent rebuild
%IZI Incremental update time -©- Geo. mean query time - Max. query time

100% Varden 10% Uniform + 90% Varden
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Imbalance - Queries

How the imbalance ratio a impact the update time and query time
 Smaller & & query more balance required, more rebuild time and faster query;
e Larger a - more tolerance of imbalance, less rebuild time and slower;

[_1 Incremental update time -©- Geo. mean query time - Max. query time
100% Varden 10% Uniform + 90% Varden
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Ssummary

The Pkd-tree is a parallel kd-tree that provides both
» strong theoretical guarantee,
* high efficient practical performance.

Tree construction
* Use samples to find the median.
* Build multiple levels at once.
* Cache-efficient points sieving algorithm.
* Ensure tree height to be logn + 0(1).

Batch updates
* Weight-balanced scheme.
e Reconstruct the imbalanced sub-trees.
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