
Parallel kd-tree with Batch Updates

Ziyang Men

UC Riverside

Joint work with Zheqi Shen, Yan Gu and Yihan Sun

Parallel Model and I/O Model

Parallel Model

Shared-memory multi-core setting, using fork-join
parallelism assuming binary-forking.

Work-span model

• Work: total number of operations (sequential time).

• Span/depth: longest dependence chain (parallel
time).

Work-efficient: work asymptotically the same as the
best sequential algorithm.

fork

join

I/O Model
Two levels
• A fast memory of fixed size 𝑀 (small).
• A slow memory of unbounded size (large).

Two types of memory transfer
• Read: load a block from slow memory
• Write: write a block to the slow memory

The I/O complexity of an algorithm is:
(read transfer) + # (write transfer)

kd-tree

kd-tree
A spatial partition data structure to manage points in the geometric space.

• Recursively splits the region in the median.

kd-tree
A spatial partition data structure to manage points in the geometric space.

• Recursively splits the region in the median.

• Every internal node represents a sub-region.

• Every leaf contain a single point.

(𝑥, 5)

(𝑦, 6) (𝑦, 4)

𝑦

6

4

𝑥5

Build a kd-tree

1. Find the median of the inputs.

2. Partition into two parts.

3. Recursive.

𝑶(𝒏 𝐥𝐨𝐠 𝒏)

𝑦

𝑥

Why kd-tree ?

• Linear space

• Simple algorithms

• Comparison based
• Resistant to skewed data

• Scale to reasonably large dimension (𝑫 ≈ 𝟏𝟎)

• Support wide range of queries

Challenge 1: dynamic kd-tree

To insert or delete points from the tree.

kd-tree is generally considered to be a static structure.
• Keep it fully balanced to ensure the query efficiency.
• Require rebuilding the whole tree after updates.

E.g. Bentely[CACM’ 75], Agarwal[PODS’ 16], CGAL[CGAL’ 20], Bhl-tree[SIGMOD’ 22] …

Alternatively, handle updates using logarithmic methods.
• Decompose a single kd-tree into 𝑶(𝐥𝐨𝐠 𝒏) static kd-trees.
• Update starts from small trees.
• Faster update but slower on query.

E.g. Bentely[IPL’ 79], Bkd-tree[SSTD’ 03], Agarwal[PSCG’ 03], Log-tree[SIGMOD’ 22] …

Challenges:
Achieve fast update, meanwhile guarantee the query efficiency.

Bentely [CACM’ 75]: Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975), 509–517.
Agarwal [PODS’ 16]: Pankaj Agarwal, Kyle Fox, Kamesh Munagala, and Abhinandan Nath. 2016. Parallel algorithms for constructing range and nearest-neighbor searching data structures. In Principles of Database Systems (PODS). 429–440.
CGAL [CGAL’ 20]: The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/Manual/packages.html.
Log-tree [SIGMOD’ 22]: Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).
Bentely [IPL’ 79]: Jon Louis Bentley. 1979. Decomposable searching problems. Inform. Process. Lett. 8, 5 (1979), 244–251.
Bkd-tree [SSTD’ 03]: Octavian Procopiuc, Pankaj K Agarwal, Lars Arge, and Jeffrey Scott Vitter. 2003. Bkd-tree: A dynamic scalable kd-tree. In International Symposium on Spatial and Temporal Databases (SSTD). Springer, 46–65.
Agarwal [PSCG’ 03]: Pankaj K Agarwal,Lars Arge, Andrew Danner, and Bryan Holland-Minkley. 2003. Cache-oblivious data structures for orthogonal range searching. In Proceedings of the nineteenth annual symposium on Computational geometry. 237–245.
Bhl-tree [SIGMOD’ 22]: Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).

https://doc.cgal.org/5.1/Manual/packages.html

Challenge 2: static kd-tree algorithms

1. Find the exact median of the inputs.

2. Partition into two parts.

3. Recursive.

• Required by a fully balanced tree.

• High I/O cost.

• Enforce the algorithm proceeds level-by-level.

Prevents the algorithm to be highly parallel and I/O efficient.

Even for the static kd-tree, we are unaware of kd-tree algorithm that is
highly parallel and I/O efficient.

Our contribution

Propose the Pkd-tree (Parallel kd-tree) that is highly parallel, I/O-efficient, and
can support efficient updates.

1. Build a slightly unbalanced tree, achieve a construction algorithm that
optimizes work, span and I/O complexity.

• Height: 𝐥𝐨𝐠 𝒏 + 𝑶(𝟏),

• Not affect the existing query bound.

2. A reconstruction-based update algorithm that guarantees the tree to be
weight-balanced.

3. A highly efficient parallel implementation.

Close the long-standing gap between the wide usage of kd-trees and lack of a
highly efficient parallel implementation.

Parallel tree construction

Parallel kd-tree
Serial construction

1. Find the median

2. Partition points

3. Recursive

𝑶(𝒏𝐥𝐨𝐠 𝒏)

Does it look familiar?

• Quick Sort!

• Sorting time is a lower bound for
kd-tree construction.

The plain parallel algorithm

Parallel median

Parallel partition

Parallel recursive

𝑶(𝒏𝐥𝐨𝐠 𝒏) work

𝑶(𝐥𝐨𝐠𝟐 𝒏) span

𝑶(
𝒏

𝑩
𝐥𝐨𝐠 𝒏) I/O complexity

• Sorting is 𝑶(
𝒏

𝑩
𝐥𝐨𝐠𝑴𝒏).

• I/O inefficient!

E.g., for OSM [PC’08] with 1.2 billion points:

• The plain parallel algorithm: 56.6s

• Ours: 5.08s
OSM [PC’08]: Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated street maps. IEEE Pervasive computing 7, 4 (2008), 12–18.

Observations

1. Build a fully balanced tree.

• 𝐥𝐨𝐠 𝒏 tree height, ensure the query bound.

• Find the exact median (high cost).

2. Build one level at once.

• Find median and partition in each level.

• More I/O needed.

The plain parallel algorithm

Parallel median

Parallel partition

Parallel recursive

Our ideas

Convention

1. Build a fully balanced tree

• 𝐥𝐨𝐠 𝒏 tree height

• Find the exact median

2. Build one level at once

• Find median and partition in each level

• More I/O needed

Our ideas

1. A slightly unbalanced tree.

• 𝐥𝐨𝐠 𝒏 + 𝑶 𝟏 tree height.

• Use samples to estimate the median.

2. Build multiple levels at once

• One round of data movement is sufficient.

• I/O efficient points sieving algorithm to
partition points.

Our parallel tree construction (sketch)

1. Take sufficient samples.

2. Pick the median from samples.

3. Construct multiple levels of tree at once.

4. Sieving points to the corresponding sub-trees.

5. Parallel recurse.

Sampling and build multiple levels
1. Take sufficient samples.

2. Pick the median in samples.

3. Build multiple levels at once.

(𝑥, 6)

(𝑦, 3) (𝑦, 6)

𝑦

3

6

𝑥6

Skeleton

Bucket

Serial

Sample size
1. Take sufficient samples.

2. Pick the median in samples.

3. Build multiple levels at once.
Serial

Intuition

• Less samples → faster, may break the tree height bound.

• More samples → slower, yet better tree height guarantee.

Lemma 3.2

Given over-sampling rate 𝝈, the total height of Pkd-tree with size 𝒏 is

• 𝑶 𝐥𝐨𝐠 𝒏 if 𝝈 = 𝛀 𝐥𝐨𝐠 𝒏 ,

• 𝐥𝐨𝐠 𝒏 + 𝑶(𝟏) if 𝝈 = 𝛀 𝐥𝐨𝐠𝟑 𝒏 .

Our parallel tree construction

1. Take sufficient samples.

2. Pick the median from samples.

3. Construct multiple levels of tree at once.

4. Sieving points to the corresponding sub-trees.

5. Parallel recurse.

Parallel Points Sieving
Remaining task:

• Distribute points into corresponding buckets.

• Known as the parallel point sieving.

(𝑥, 6)

(𝑦, 3) (𝑦, 6)

𝑦

3

6

𝑥6

Skeleton

Bucket

Inputs

Skeleton

Buckets

Parallel points sieving

Formally, we want to

• rearrange the input array to make points in same bucket being contiguous

Input a b c d e f g h i
Bucket 0 2 3 1 2 1 0 3 1

Output a g d f i b e c h
Bucket 0 0 1 1 1 2 2 3 3

Trivial in the serial setting.

Parallel is hard.
• Avoid data race, e.g., avoid write two points to same position at same time.
• Keep I/O efficiency, e.g., write every point directly to its destination.

We borrow ideas from the cache-efficient parallel sorting [SPAA’ 20].

… … … …

Cache-efficient sieving [SPAA’23]: Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)..

Parallel points sieving

High-level ideas

1. Divide the input array into chunks.

2. Parallel for each chunk:

- Count number of points in every bucket.

- Store answer in array B.

3. Perform column major prefix sum on B.

4. Parallel for each chunk:

- Write each point to the destination.

Input a b c d e f g h i
Bucket 0 2 3 1 2 1 0 3 1

Output a g d f i b e c h
Bucket 0 0 1 1 1 2 2 3 3

𝐵 0 1 2 3
0 1 0 1 1
1 0 2 1 0
2 1 1 0 1C

h
u

n
k

Bucket

𝐵 0 1 2 3

0 0 2 5 7

1 1 2 6 8

2 1 4 7 8C
h

u
n

k

Bucket

Chunk 0 Chunk 1 Chunk 2

Count points
in each bucket

Column major
prefix sum

Write to
destination

Our parallel tree construction

1. Take sufficient samples.

2. Pick the median from samples.

3. Construct multiple levels of tree at once.

4. Sieving points to the corresponding sub-trees.

5. Parallel recurse.

Tree construction The plain parallel algorithm Ours (w.h.p)

Work 𝑶(𝒏𝐥𝐨𝐠 𝒏) 𝑶(𝒏𝐥𝐨𝐠 𝒏)

Span 𝑶(𝐥𝐨𝐠𝟐 𝒏) 𝑶(𝑴𝝐𝐥𝐨𝐠𝑴𝒏)

I/O 𝑶(
𝒏

𝑩
𝐥𝐨𝐠 𝒏) 𝑶

𝒏

𝑩
𝐥𝐨𝐠𝑴𝒏

Tree height:
log 𝑛 + 𝑂(1)

Batch updates

Batch updates

Insert batch points to leaves / remove batch points from leaves

Parallel
kd-tree

Layout Balancing

CGAL
[CGAL’ 20]

Single
Fully

balanced

BHL-tree
[SIGMOD’ 22]

Single
Fully

balanced

Log-tree
[SIGMOD’ 22]

Logarithmic
method

-

Slow update

Slow query

Can we achieve
fast update &
fast query?

Batch updates

Insert batch points to leaves / remove batch points from leaves

Parallel
kd-tree

Layout Balancing

CGAL
[CGAL’ 20]

Single
Fully

balanced

BHL-tree
[SIGMOD’ 22]

Single
Fully

balanced

Log-tree
[SIGMOD’ 22]

Logarithmic
method

-

Pkd-tree Single
Weight-

balanced

Slow update

Slow query

Can we achieve
fast update &
fast query?

Fast query Fast update

Weight-balanced scheme
Invariant:

Two subtrees can be off from perfectly balanced by a factor of 𝜶, 𝟎 < 𝜶 < 𝟏.

During batch updates, compared with a fully balanced tree:

• Less rebuilds needed

• May reduce the query efficiency

The behavior is controlled by the imbalance ratio 𝜶, more flexible!

(𝟏 − 𝜶) ∙ 𝒏

𝜶 ∙ 𝒏

𝒏 imbalance ratio

Handling of imbalance
Some weight-balanced trees
• can use rotate to re-balance in the amortized constant time.
• e.g., AVL-tree, Red-black tree.

kd-tree does not support rotation, as tree nodes represent nested regions.
• Instead rebuild the whole tree, one can only rebuild the imbalanced sub-tree.
• Known as partial rebuild [MHO’ 1983].
• Drawback: still needs to perform rebuild after each updates.

Partial rebuild [MHO’ 75]: Mark H Overmars. 1983. The design of dynamic data structures. Vol. 156. Springer Science & Business Media.

Our idea:
Use the partial rebuild scheme to maintain a weight-balanced tree.

Batch insert

(𝑥, 6)

(𝑦, 3) (𝑦, 6)

𝑦

3

6

𝑥6

Batch insert

(𝑥, 6)

(𝑦, 3) (𝑦, 6)

𝑦

3

6

𝑥6

Skeleton

Bucket

1. Fetch the skeleton.
2. Sieve the insertion points to the bucket.
3. In parallel:

• Rebuild imbalanced sub-trees;
• Recurse on other buckets.

Imbalance!

Batch updates bounds

1. Fetch the skeleton.

2. Sieve the insertion points to the bucket.

3. In parallel:

• Rebuild imbalanced sub-trees;

• Recurse on other buckets.

Using 𝒎 = 𝑶(𝒏) the batch size

• 𝑶(𝐥𝐨𝐠𝟐𝒏) span,

• 𝑶(𝐥𝐨𝐠𝟐𝒏) work per element,

• 𝑶(𝐥𝐨𝐠
𝒏

𝒎
+ (𝐥𝐨𝐠 𝒏𝐥𝐨𝐠𝑴𝒏)/𝑩), I/O cost per element.

// Amortized to tree nodes visit

Experiments

Implementation

Reduce the memory usage of tree

• Remove everything that is unnecessary, i.e., the bounding box.

• Query needs to take a bounding box from root and compute new ones on-the-fly.

• Drawback: less prune efficiency when dimension is high.

We use standard query algorithms for single kd-trees.

Parameters

• Build 6 levels at once.

• Allow the sub-trees’ weight to be off by at most 30% (𝜶 = 𝟎. 𝟑).

Experiments

Setting

• Use machine with 96 Cores and 1.5 TB RAM.

• Implemented using C++, using ParlayLib [SPAA’ 20] for parallelism.

Benchmarks

• Uniform: points are uniformly distributed within a cube.

• Varden: points have very skewed distribution.

• Real-word graphs: scaling to dimension 10 and billions size.

Parlay [SPAA’ 20]: Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib — a toolkit for parallel algorithms on shared-memory multicore machines. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 507–509.

Baselines

Parallel
kd-tree

Layout Construction Batch Insert Batch Delete

CGAL
[CGAL’ 20]

Single Plain Rebuild whole tree Serial Delete

BHL-tree
[SIGMOD’ 22]

Single Plain Rebuild whole tree Rebuild whole tree

Log-tree
[SIGMOD’ 22]

Logarithmic
method

Plain Merge and rebuild Merge and rebuild

Pkd-tree Single I/O efficient
Partial

reconstruction
Partial

reconstruction

CGAL [CGAL’ 20]: The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/Manual/packages.html.
Log-tree [SIGMOD’ 22]: Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).
Bhl-tree [SIGMOD’ 22]: Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).

https://doc.cgal.org/5.1/Manual/packages.html

Tree construction

Magnitudes faster

4.1x

1.9x

Cache optimization is important

Batch update

Tree size is 1000M, lower is better

Slow, rebuild the whole tree

Rebuild large buffer trees incurs
more time → line jumps

Serial deletion, slower for large batch

Rebuild the whole tree, stable

Batch Insertion

Batch Deletion

KNN

Tree size is 1000M, query size is 10M. Lower is better

Query 𝑶(𝐥𝐨𝐠 𝒏) trees,
slow.

Single tree, similar time.

Slightly faster due to
smaller memory footprint.

Imbalance

How the imbalance ratio 𝜶 impact the update time and query time

• Smaller 𝜶 → more tolerance of imbalance, less rebuild time and slower query;

• Larger 𝜶 → more balance required, more rebuild time and faster query;

Design of experiments
• Construct a tree by inserting 1000 batches one-by-one. Batch size is 1M.
• Perform 10-NN query after each insertion.
• Test for two distributions: the skewed one and the uniform.

Imbalance - Updates
How the imbalance ratio 𝜶 impact the update time and query time

• Smaller 𝜶 → query more balance required, more rebuild time and faster query;

• Larger 𝜶 → more tolerance of imbalance, less rebuild time and slower;

Fastest
Skewed tree

Frequent rebuild

More balanced

Imbalance - Queries

Increasing tree depth

Best compromise

How the imbalance ratio 𝜶 impact the update time and query time

• Smaller 𝜶 → query more balance required, more rebuild time and faster query;

• Larger 𝜶 → more tolerance of imbalance, less rebuild time and slower;

Summary

The Pkd-tree is a parallel kd-tree that provides both

• strong theoretical guarantee,

• high efficient practical performance.

Tree construction

• Use samples to find the median.

• Build multiple levels at once.

• Cache-efficient points sieving algorithm.

• Ensure tree height to be 𝐥𝐨𝐠𝒏 + 𝑶(𝟏).

Batch updates

• Weight-balanced scheme.

• Reconstruct the imbalanced sub-trees.

	幻灯片 1: Parallel kd-tree with Batch Updates
	幻灯片 2: Parallel Model and I/O Model
	幻灯片 3: Parallel Model
	幻灯片 4: I/O Model
	幻灯片 5: kd-tree
	幻灯片 6: kd-tree
	幻灯片 7: kd-tree
	幻灯片 8: Build a kd-tree
	幻灯片 9: Why kd-tree ?
	幻灯片 10: Challenge 1: dynamic kd-tree
	幻灯片 11: Challenge 2: static kd-tree algorithms
	幻灯片 12: Our contribution
	幻灯片 13: Parallel tree construction
	幻灯片 14: Parallel kd-tree
	幻灯片 15: Observations
	幻灯片 16: Our ideas
	幻灯片 17: Our parallel tree construction (sketch)
	幻灯片 18: Sampling and build multiple levels
	幻灯片 19: Sample size
	幻灯片 20: Our parallel tree construction
	幻灯片 21: Parallel Points Sieving
	幻灯片 24: Parallel points sieving
	幻灯片 25: Parallel points sieving
	幻灯片 31: Our parallel tree construction
	幻灯片 33: Batch updates
	幻灯片 34: Batch updates
	幻灯片 35: Batch updates
	幻灯片 36: Weight-balanced scheme
	幻灯片 37: Handling of imbalance
	幻灯片 38: Batch insert
	幻灯片 39: Batch insert
	幻灯片 40: Batch updates bounds
	幻灯片 41: Experiments
	幻灯片 42: Implementation
	幻灯片 43: Experiments
	幻灯片 44: Baselines
	幻灯片 45: Tree construction
	幻灯片 46: Batch update
	幻灯片 47: KNN
	幻灯片 48: Imbalance
	幻灯片 49: Imbalance - Updates
	幻灯片 50: Imbalance - Queries
	幻灯片 52: Summary

