
Parallel 𝒌-Core Decomposition:
Theory and Practice

Youzhe Liu, Xiaojun Dong, Yan Gu, Yihan Sun

University of California, Riverside

1

How to Define Dense Subgraphs (formally)?

•𝒌-core definition:
Given a graph 𝐺, 𝑘-core is the subgraph after removing
all the vertices with degrees smaller than 𝑘

2

1-core

3-core

2-core

How to Define Dense Subgraphs (formally)?

•𝒌-core definition:
Given a graph 𝐺, 𝑘-core is the subgraph after removing
all the vertices with degrees smaller than 𝑘

3

2-core

3-core

1-core

How to Define Dense Subgraphs (formally)?

•𝒌-core decomposition:
The process of listing all the k-core structures in the graph 𝐺

4

2-core

3-core

1-core

𝒌-core is widely used

5

Community detection [1,2,3] Infra-network robustness [4] Strongly cohesive structure
in biology [5,6]

Figure sources: Wikipedia

[1] Marián Boguná, Romualdo Pastor-Satorras, Albert Dí az Guilera, and Alex Arenas. 2004. Models of social networks based on social distance attachment. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 70, 5 (2004)
[2] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. Evaluating cooperation in communities with the k-core structure. In 2011 International conference on advances in social networks analysis and mining.
[3] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H Eugene Stanley, and Herná n A Makse. 2010. Identification of influential spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
[4] Kate Burleson-Lesser, Flaviano Morone, Maria S Tomassone, and Hernán A Makse. 2020. K-core robustness in ecological and financial networks. Scientific reports 10, 1 (2020), 3357.
[5] Yizong Cheng, Chen Lu, and Nan Wang. 2013. Local k-core clustering for gene networks. In 2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 9–15.
[6] Arnold I Emerson, Simeon Andrews, Ikhlak Ahmed, Thasni KA Azis, and Joel A Malek. 2015. K-core decomposition of a protein domain co-occurrence network reveals lower cancer mutation rates for interior cores. Journal of clinical
bioinformatics 5 (2015), 1–11.

𝒌-core is a subroutine for many problems

• Dense subgraphs discovery [1]

• Hierarchical graph clustering [2]

• Graph degeneracy for graph learning [3]

• Graph coloring [4]

• …

6
[1] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local algorithms for hierarchical dense subgraph discovery. Proc. VLDB Endow. 12, 1 (September 2018), 43–56. https://doi.org/10.14778/3275536.3275540
[2] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2014. CORECLUSTER: a degeneracy based graph clustering framework. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI'14). AAAI Press, 44–50.
[3] Guillaume Salha, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis. 2019. A degeneracy framework for scalable graph autoencoders. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI'19).
[4] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIc

https://doi.org/10.14778/3275536.3275540

Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition

7
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1-core

3-core

2-core

2-core

3-core

∅

1 2 3 4 5 …

bin-sort (deg values)

Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition

8
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1-core

3-core

2-core

2-core

3-core

∅

1 2 3 4 5 …

bin-sort (deg values)

Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition

9
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1-core

3-core

2-core

2-core

3-core

∅

1 2 3 4 5 …

bin-sort (deg values)

Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition

10
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1-core

3-core

2-core

2-core

3-core

∅

1 2 3 4 5 …

bin-sort (deg values)

Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition

11
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1-core

3-core

2-core

2-core

3-core

∅

One subround

One round

Sequential Solutions

12
Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

𝑶(|𝑽| + |𝑬|)

1-core

3-core

2-core

2-core

3-core

∅

The sizes of real-world graphs are very large

13

Web graphs [1]:
Billions of edges

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

http://webdatacommons.org/

The sizes of real-world graphs are very large

14

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

Web graphs [1]:
Billions of edges

Performance is important
for 𝑘-core decomposition!

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph

http://webdatacommons.org/

Multi-core Parallelism

15

Parallelism is ubiquitous and can

be used to accelerate algorithms

Figure credit: Wikipedia

Parallel Computational Model [1]

• Shared-memory multi-core setting

• Work: the total number of operations
• = running time on one core

• Work-efficient: The Work matches the
complexity of the best sequential algorithm

• Work-efficient is a primary goal for parallel
algorithm design

16
[1] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel algorithms in the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 89–102.

Challenges for Parallel 𝑘-core Solutions

17

• Existing sequential algorithm [BZ03]: follows the
definition

17
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1-core

3-core

2-core

2-core

3-core

∅

1 2 3 4 5 …

bin-sort (deg values)

Challenges for Parallel 𝑘-core Solutions

18

Challenges for Parallel 𝑘-core Solutions

19

1. Framework: How to arrange & gather the vertices with target degree values

1 2 3 4 5 …

bin-sort (deg values)

The bin-sort-based array does not work in parallel

degree = 1

Challenges for Parallel 𝑘-core Solutions

20

2. Peeling in a subround: How to peel (remove) them in parallel

We need to process the signals of degree reduction in parallel

There are some existing parallel solutions

•Different parallel peeling strategies

• Offline-peeling: Julienne[1]

• Online-peeling: ParK[2], PKC[3]

21
[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA ’17
[2]Dasari, Naga Shailaja et al. “ParK: An efficient algorithm for k-core decomposition on multicore processors.” Big Data, 2014
[3] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017

Offline & Online Peeling

22

offline

decompose to 3-core

peel vertices with degree <3

Offline & Online Peeling

23

offline

-1

-1-1
-1

decompose to 3-core

peel vertices with degree <3

Offline & Online Peeling

24

offline

-1

-1-1
-1 𝑣1:-2

histogram

decompose to 3-core

peel vertices with degree <3

𝑣2:-2(parallel group_by)

Offline & Online Peeling

25

offline

-2

-2

decompose to 3-core

peel vertices with degree <3

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)

Offline & Online Peeling

26

offline

-2

-2

decompose to 3-core

peel vertices with degree <3

online

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)

Offline & Online Peeling

27

offline

-2

-2

decompose to 3-core

peel vertices with degree <3

online -1 -1-1
-1 fetch-and-add (atomic)

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)

FAA_dec() or FAA_inc()

FAA_dec(-1)

𝑂 1

Offline & Online Peeling

28

offline

decompose to 3-core

peel vertices with degree <3

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)

online

-2

-2

-1 -1-1
-1

fetch-and-add

decrease degree directly
(using atomic ops)

Offline & Online Peeling: Pros & Cons

29

offline

key-value pairs

Parallel histogram

degree reduction of neighbors (keys)

online

fetch-and-add

decrease degree directly

-2

-2

-1 -1-1
-1

subround 1

Offline & Online Peeling: Pros & Cons

30

subround 2

offline

key-value pairs

Parallel histogram

degree reduction of neighbors (keys)

online

fetch-and-add

decrease degree directly

-2

-2

-1 -1-1
-1

Offline & Online Peeling: Pros & Cons

31

can’t avoid massive subrounds

subround 2

subround 3

subround 1

subround 2

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

(a) without VGC (b) with VGC

offline

key-value pairs

Parallel histogram

degree reduction of neighbors (keys)

online

fetch-and-add

decrease degree directly

-2

-2

-1 -1-1
-1

Offline & Online Peeling: Pros & Cons

32

subround 3

subround 1

subround 2

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

(a) without VGC (b) with VGC

can’t avoid massive subrounds

One subround = one round of synchronization overhead

𝑛

𝑛

Offline & Online Peeling: Pros & Cons

33

-1
-1-1

-1

Offline & Online Peeling: Pros & Cons

34

buffers

…

…

-1
-1-1

-1

threads

Offline & Online Peeling: Pros & Cons

35

…

…

buffers

threads

Offline & Online Peeling: Pros & Cons

36

…

…

buffers

threads

Offline & Online Peeling: Pros & Cons

37

…

…

buffers

threads

Offline & Online Peeling: Pros & Cons

38

…

…

buffers

threads

Offline & Online Peeling: Pros & Cons

39

…

…

!
Buffers may be full, and it hurts load balance

Issue from the subround reduction

buffers

threads

Offline & Online Peeling: Pros & Cons

40

𝑈1
𝑈2

𝑈4

𝑈3

𝑈5

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)
deg(V) =100000

…

contention

𝑈100000

The Second Challenge: How to arrange the vertices?

41

offline

online

0 1 2 3

Overflow bucket

k

k k+1 k+2 k+3

multi buckets

single frontier

The Second Challenge: How to arrange the vertices?

42

offline

online

0 1 2 3

Overflow bucket

k

k k+1 k+2 k+3

more scans for all vertices

Less scans but more space for the buckets

Summary of Existing Solutions

• Existing offline-peeling solutions

• Existing online-peeling solutions

43

Offline peeling

(Julienne [DBS’17])

Memory limitation for multi-bucket structure

Cannot avoid massive surrounds

Online peeling

(PKC [KM’17])

Not work-efficient

Heavy contention

Load imbalance (for unbounded buffers)

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Summary of Existing Solutions

44

Can we get good performance on all types of graphs?

Offline peeling

(Julienne [DBS’17])

Memory limitation for multi-bucket structure

Cannot avoid massive surrounds

Online peeling

(PKC [KM’17])

Not work-efficient

Heavy contention

Load imbalance (for unbounded buffers)

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Bad Performance on
large-diameter graphs

Bad Performance on
dense graphs

Summary of Existing Solutions

45

Offline peeling

(Julienne [DBS’17])

Online peeling

(PKC [KM’17])

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

unified
framework?

Easy to implement

Work-efficient

0 1 2 3
Overflow
bucket histogram based offline peeling

k Atomic fetch-and-add oneline peeling

Our 𝑘-core decomposition framework

46

alive vertices 𝐴

frontier 𝐹1

alive vertices 𝐴

Gather

 using parallel scan

pack the remaining vertices

as new 𝐴

alive vertices 𝐴

peeling subrounds
using both online and
offline strategies

frontier 𝐹2

47

Our
framework

Our Framework: adaptive for both peeling strategies

cannot avoid massive subrounds

Bad performance on graphs with a large number subrounds

high-volume concurrent
atomic operations

1. Heavy contention
2. Load imbalance
(for unbounded buffer)

Previous online peeling
(FAA)

Previous offline peeling
(histogram)

48

Our
framework

Our Algorithm: Optimized Online-peeling

Online
peeling

Allow multiple optimizations!
Offline
peeling

Inherited issue: a large number of subrounds

49

Our
framework

Our Algorithm: Optimized Online-peeling

Online
peeling

Optimization 1:
2-parameter Sampling

Optimization 2:
Vertical Granularity Control

Reduce contention

Reduce #subrounds
&

Better load balance

Heavy contention

Load imbalance

How can we reduce the contention?

50

Over the best sequential
𝑈1

𝑈2

𝑈4

𝑈3

𝑈5

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)
deg(V) =100000

…

contention

𝑈100000

51

Technique 1: Sampling

…

High-volume contention while FAA_dec

Optimization 1:
Sampling

… …

52

Technique 1: Sampling

…

High-volume contention

Optimization 1:
Sampling

… …FAA_decrease

53

Technique 1: Sampling

…

Optimization 1:
Sampling

… …

FAA_decrease

Technique 1: Sampling

54

…

… …

FAA_decrease

What is the difficulty of sampling
in 𝑘-core decomposition?

Technique 1: Sampling

55

…

… …

FAA_decrease

𝑣

0 𝑘𝑚𝑎𝑥

𝑘 is increasing degree of 𝑣 is dropping

𝒌

Technique 1: Sampling

56

…

… …

FAA_decrease

𝑣

𝑘𝑚𝑎𝑥

degree of 𝑣 is dropping

𝑣

𝑣

𝑣

0

𝑘 is increasing

𝒌

58

Technique 1: 2-parameter Sampling

≤ 𝑘

counter value does not hit the threshold (still under sampling)

When will the error occur?

…

… …

counter

estimate

real neighbor deletions

59

Technique 1: 2-parameter Sampling

STOP sampling & Check the real induced degree (counting alive neighbors)

When the counter value is above a ratio w.r.t. 𝑘

Can we make sure the sampling process is correct
with high probability regarding |𝑉| ?

≤ 𝑘

…

… …

60

Technique 1: 2-parameter Sampling

…

𝑛 sampled vertices

Different starting and exiting 𝑘 value

Union-bound for the correctness of sampled vertices

Pr 𝑠 <
𝑡𝑝

4
< 𝑛

−
𝑡𝑝

4 ln 𝑛Pr[stop before error] =

≤ 𝑘

…

… …

61

Technique 1: 2-parameter Sampling

…

Pr 𝑠 <
𝑡𝑝

4
< 𝑛

−
𝑡𝑝

4 ln 𝑛Pr[stop before error] =

Errors indeed occur
We can detect the errors

Restart the entire algorithm with other parameters

≤ 𝑘

…

… …

Performance Comparison for Sampling

62
Lower is better

96-core machine
(192 hyperthreads)

63

Reduce #Subround: A Better Design?

Unbounded buffers -> load imbalance & overflow

buffers

…

…

!

65

Technique 2: Vertical Granularity Control

Local queues with fixed sizes

66

Technique 2: Vertical Granularity Control

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

Local queues with fixed sizes

67

Technique 2: Vertical Granularity Control

Local queues with fixed sizes

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

68

Technique 2: Vertical Granularity Control

Local queues with fixed sizes

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

69

Technique 2: Vertical Granularity Control

Local queues with fixed sizes

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

70

Technique 2: Vertical Granularity Control

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

Local queues with fixed sizes

71

Technique 2: Vertical Granularity Control

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

Local queues with fixed sizes

For next round

72

Technique 2: Vertical Granularity Control

In the fronter
of subround 1

Visited in
local queue

In the fronter
of subround 2

Local queues with fixed sizes

Reduce #subrounds (for a ratio)

Load balance

Avoid overflow

Subround Reduction Ratio with VGC

73

VGC Provides Significant Speed-Up

74

Higher is better

Summary: Two Optimizations

75

Optimization 2:
Vertical Granularity Control

Reduce #subrounds
&

Better load balance

Optimization 1:
2-parameter Sampling

Reduce contention

Further improvements?
Maintain vertices in a better structure?

Why do we need a better bucketing structure?

76

- Space issue;
- Movements overhead - Large scan overhead

Fixed number of buckets

k k+1 k+2 k+3 overflow

large small

scan

Our Hierarchical Bucketing Structure (HBS)

77

Bucket ID 4 …1 20 3

8~15 …0 4~7𝑘 = 0 or 1 2~31

Bucketing structure in a prefix-doubling manner
Range size 1, 1, 2, 4, 8, …

Each bucket holds a range of degrees
instead of a cetain one

Our Hierarchical Bucketing Structure (HBS)

78

Bucket ID 4… 1 20 3

8~15 …322 or 3

8~15 …544 or 5

…76 -6 or 7

…9 10~118 12~158 or 9 …

-

8~15 …0 4~7𝑘 = 0 or 1 2~31

-

8~15-

6~7 -

4~7

…

The new HBS can efficiently handle and balance all cases

Our Hierarchical Bucketing Structure (HBS)

79

Bucket ID 4… 1 20 3

8~15 …322 or 3

8~15 …544 or 5

…76 -6 or 7

…9 10~118 12~158 or 9

-

8~15 …0 4~7𝑘 = 0 or 1 2~31

-

8~15-

6~7 -

4~7

𝑂(log 𝑑(𝑣))

k k+1 k+2 k+3
Overflow
bucket

k

𝑂(𝑚/𝑛) 𝑂(𝑑(𝑣))

fix-number bucketsHBS
single frontier

 (1 bucket)

HBS is overall better than the other two structures

80Lower is better

Experiments Setups

81

Complete tests
on synthetic
graphs

Large-scale
real-world
graphs

Experiments on the
performance of each
proposed technique

Experiments setup

• ParlayLib [1] for fork-join
parallelism and primitives

• 96-core (192 hyperthreads)
machine with four Intel Xeon
Gold 6252 CPUs

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib - A Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '20)

Our framework with all the techniques:
Better Overall Performance

82

Lower is better 96-core machine
(192 hyperthreads)

Conclusions: Work-efficient Framework

• Summary

83

Our unified
framework

Online peeling

Offline peeling

Work-efficient

Conclusions: Improvements on Our Framework

• Summary

84

Our unified
framework

Online peeling

Offline peeling

optimizations

Better performance
on all graphs

Our new
Online-
peeling

Conclusions: Two Optimizations

Our new
Online-
peeling

Technique 1: sampling

For dense graphs For all types of graphs

Improve the contention issue

Technique 2: Vertical granularity control

Reduce #subrounds with better load balance

85

Conclusions: HBS – A Better Structure

Our new Online-peeling

Technique 1: sampling

For dense graphs For all types of graphs

Improve the contention issue

Technique 2: Vertical granularity control

Reduce #subrounds with better load balance

A better bucketing structure
8~150 4~72~31

86

Contact

87

• Code on GitHub:
• https://github.com/ucrparlay/PASGAL

• Contact
• Youzhe Liu (yliu908@ucr.edu)

https://github.com/ucrparlay/Edit-Distance
https://github.com/ucrparlay/Edit-Distance

	幻灯片 1: Parallel 加粗斜体 k-Core Decomposition: Theory and Practice
	幻灯片 2: How to Define Dense Subgraphs (formally)?
	幻灯片 3: How to Define Dense Subgraphs (formally)?
	幻灯片 4: How to Define Dense Subgraphs (formally)?
	幻灯片 5: 加粗斜体 k-core is widely used
	幻灯片 6: 加粗斜体 k-core is a subroutine for many problems
	幻灯片 7: Sequential Solutions
	幻灯片 8: Sequential Solutions
	幻灯片 9: Sequential Solutions
	幻灯片 10: Sequential Solutions
	幻灯片 11: Sequential Solutions
	幻灯片 12: Sequential Solutions
	幻灯片 13: The sizes of real-world graphs are very large
	幻灯片 14: The sizes of real-world graphs are very large
	幻灯片 15: Multi-core Parallelism
	幻灯片 16: Parallel Computational Model [1]
	幻灯片 17: Challenges for Parallel k-core Solutions
	幻灯片 18: Challenges for Parallel k-core Solutions
	幻灯片 19: Challenges for Parallel k-core Solutions
	幻灯片 20: Challenges for Parallel k-core Solutions
	幻灯片 21: There are some existing parallel solutions
	幻灯片 22: Offline & Online Peeling
	幻灯片 23: Offline & Online Peeling
	幻灯片 24: Offline & Online Peeling
	幻灯片 25: Offline & Online Peeling
	幻灯片 26: Offline & Online Peeling
	幻灯片 27: Offline & Online Peeling
	幻灯片 28: Offline & Online Peeling
	幻灯片 29: Offline & Online Peeling: Pros & Cons
	幻灯片 30: Offline & Online Peeling: Pros & Cons
	幻灯片 31: Offline & Online Peeling: Pros & Cons
	幻灯片 32: Offline & Online Peeling: Pros & Cons
	幻灯片 33: Offline & Online Peeling: Pros & Cons
	幻灯片 34: Offline & Online Peeling: Pros & Cons
	幻灯片 35: Offline & Online Peeling: Pros & Cons
	幻灯片 36: Offline & Online Peeling: Pros & Cons
	幻灯片 37: Offline & Online Peeling: Pros & Cons
	幻灯片 38: Offline & Online Peeling: Pros & Cons
	幻灯片 39: Offline & Online Peeling: Pros & Cons
	幻灯片 40: Offline & Online Peeling: Pros & Cons
	幻灯片 41: The Second Challenge: How to arrange the vertices?
	幻灯片 42: The Second Challenge: How to arrange the vertices?
	幻灯片 43: Summary of Existing Solutions
	幻灯片 44: Summary of Existing Solutions
	幻灯片 45: Summary of Existing Solutions
	幻灯片 46: Our k-core decomposition framework
	幻灯片 47: Our Framework: adaptive for both peeling strategies
	幻灯片 48: Our Algorithm: Optimized Online-peeling
	幻灯片 49: Our Algorithm: Optimized Online-peeling
	幻灯片 50: How can we reduce the contention?
	幻灯片 51: Technique 1: Sampling
	幻灯片 52: Technique 1: Sampling
	幻灯片 53: Technique 1: Sampling
	幻灯片 54: Technique 1: Sampling
	幻灯片 55: Technique 1: Sampling
	幻灯片 56: Technique 1: Sampling
	幻灯片 58: Technique 1: 2-parameter Sampling
	幻灯片 59: Technique 1: 2-parameter Sampling
	幻灯片 60: Technique 1: 2-parameter Sampling
	幻灯片 61: Technique 1: 2-parameter Sampling
	幻灯片 62: Performance Comparison for Sampling
	幻灯片 63: Reduce #Subround: A Better Design?
	幻灯片 65: Technique 2: Vertical Granularity Control
	幻灯片 66: Technique 2: Vertical Granularity Control
	幻灯片 67: Technique 2: Vertical Granularity Control
	幻灯片 68: Technique 2: Vertical Granularity Control
	幻灯片 69: Technique 2: Vertical Granularity Control
	幻灯片 70: Technique 2: Vertical Granularity Control
	幻灯片 71: Technique 2: Vertical Granularity Control
	幻灯片 72: Technique 2: Vertical Granularity Control
	幻灯片 73: Subround Reduction Ratio with VGC
	幻灯片 74: VGC Provides Significant Speed-Up
	幻灯片 75: Summary: Two Optimizations
	幻灯片 76: Why do we need a better bucketing structure?
	幻灯片 77: Our Hierarchical Bucketing Structure (HBS)
	幻灯片 78: Our Hierarchical Bucketing Structure (HBS)
	幻灯片 79: Our Hierarchical Bucketing Structure (HBS)
	幻灯片 80: HBS is overall better than the other two structures
	幻灯片 81: Experiments Setups
	幻灯片 82: Our framework with all the techniques: Better Overall Performance
	幻灯片 83: Conclusions: Work-efficient Framework
	幻灯片 84: Conclusions: Improvements on Our Framework
	幻灯片 85: Conclusions: Two Optimizations
	幻灯片 86: Conclusions: HBS – A Better Structure
	幻灯片 87: Contact

