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How to Define Dense Subgraphs (formally)?

•𝒌-core definition: 
Given a graph 𝐺, 𝑘-core is the subgraph after removing 
all the vertices with degrees smaller than 𝑘
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How to Define Dense Subgraphs (formally)?

•𝒌-core decomposition:
The process of listing all the k-core structures in the graph 𝐺
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𝒌-core is widely used 
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Community detection [1,2,3] Infra-network robustness [4] Strongly cohesive structure
in biology [5,6]

Figure sources: Wikipedia

[1] Marián Boguná, Romualdo Pastor-Satorras, Albert Dí az Guilera, and Alex Arenas. 2004. Models of social networks based on social distance attachment. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 70, 5 (2004)
[2] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. Evaluating cooperation in communities with the k-core structure. In 2011 International conference on advances in social networks analysis and mining.
[3] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H Eugene Stanley, and Herná n A Makse. 2010. Identification of influential spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
[4] Kate Burleson-Lesser, Flaviano Morone, Maria S Tomassone, and Hernán A Makse. 2020. K-core robustness in ecological and financial networks. Scientific reports 10, 1 (2020), 3357.
[5] Yizong Cheng, Chen Lu, and Nan Wang. 2013. Local k-core clustering for gene networks. In 2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 9–15.
[6] Arnold I Emerson, Simeon Andrews, Ikhlak Ahmed, Thasni KA Azis, and Joel A Malek. 2015. K-core decomposition of a protein domain co-occurrence network reveals lower cancer mutation rates for interior cores. Journal of clinical 
bioinformatics 5 (2015), 1–11.



𝒌-core is a subroutine for many problems

• Dense subgraphs discovery [1]

• Hierarchical graph clustering [2]

• Graph degeneracy for graph learning [3]

• Graph coloring [4]

• …

6
[1] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local algorithms for hierarchical dense subgraph discovery. Proc. VLDB Endow. 12, 1 (September 2018), 43–56. https://doi.org/10.14778/3275536.3275540
[2] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2014. CORECLUSTER: a degeneracy based graph clustering framework. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI'14). AAAI Press, 44–50.
[3] Guillaume Salha, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis. 2019. A degeneracy framework for scalable graph autoencoders. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI'19). 
[4] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIc

https://doi.org/10.14778/3275536.3275540


Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition

7
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).
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Sequential Solutions

• Efficient sequential algorithm [BZ03]: follows the definition
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[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).
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Sequential Solutions
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Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).
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The sizes of real-world graphs are very large
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Web graphs [1]:
Billions of edges

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

http://webdatacommons.org/


The sizes of real-world graphs are very large
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Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

Web graphs [1]:
Billions of edges

Performance is important 
for 𝑘-core decomposition!

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph

http://webdatacommons.org/


Multi-core Parallelism

15

Parallelism is ubiquitous and can 

be used to accelerate algorithms

Figure credit: Wikipedia



Parallel Computational Model [1]

• Shared-memory multi-core setting

• Work: the total number of operations
• = running time on one core

• Work-efficient: The Work matches the 
complexity of the best sequential algorithm

• Work-efficient is a primary goal for parallel 
algorithm design
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[1] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel algorithms in the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 89–102.



Challenges for Parallel 𝑘-core Solutions
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• Existing sequential algorithm [BZ03]: follows the 
definition

17
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).
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Challenges for Parallel 𝑘-core Solutions
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Challenges for Parallel 𝑘-core Solutions
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1. Framework:  How to arrange & gather the vertices with target degree values 

1 2 3 4 5 …

bin-sort (deg values)

The bin-sort-based array does not work in parallel

degree = 1



Challenges for Parallel 𝑘-core Solutions
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2. Peeling in a subround: How to peel (remove) them in parallel

We need to process the signals of degree reduction in parallel



There are some existing parallel solutions

•Different parallel peeling strategies

• Offline-peeling: Julienne[1] 

• Online-peeling: ParK[2], PKC[3]

21
[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA ’17
[2]Dasari, Naga Shailaja et al. “ParK: An efficient algorithm for k-core decomposition on multicore processors.” Big Data, 2014
[3] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017



Offline & Online Peeling
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offline

decompose to 3-core

peel vertices with degree <3



Offline & Online Peeling
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offline

-1

-1-1
-1

decompose to 3-core

peel vertices with degree <3



Offline & Online Peeling
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offline

-1

-1-1
-1 𝑣1:-2

histogram

decompose to 3-core

peel vertices with degree <3

𝑣2:-2(parallel group_by)



Offline & Online Peeling
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offline

-2

-2

decompose to 3-core

peel vertices with degree <3

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)



Offline & Online Peeling
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offline

-2

-2

decompose to 3-core

peel vertices with degree <3

online

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)



Offline & Online Peeling
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offline

-2

-2

decompose to 3-core

peel vertices with degree <3

online -1 -1-1
-1 fetch-and-add (atomic)

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)

FAA_dec() or FAA_inc()

FAA_dec(-1)

𝑂 1



Offline & Online Peeling
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offline

decompose to 3-core

peel vertices with degree <3

key-value pairs

parallel histogram
(in a batch)

degree reduction of neighbors (keys)

online

-2

-2

-1 -1-1
-1

fetch-and-add

decrease degree directly
(using atomic ops)



Offline & Online Peeling: Pros & Cons
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offline

key-value pairs

Parallel histogram

degree reduction of neighbors (keys)

online

fetch-and-add

decrease degree directly

-2

-2

-1 -1-1
-1

subround 1



Offline & Online Peeling: Pros & Cons
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subround 2

offline

key-value pairs

Parallel histogram

degree reduction of neighbors (keys)

online

fetch-and-add

decrease degree directly

-2

-2

-1 -1-1
-1



Offline & Online Peeling: Pros & Cons
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can’t avoid massive subrounds

subround 2

subround 3

subround 1

subround 2

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2

(a) without VGC (b) with VGC

offline

key-value pairs

Parallel histogram

degree reduction of neighbors (keys)

online

fetch-and-add

decrease degree directly

-2

-2

-1 -1-1
-1



Offline & Online Peeling: Pros & Cons
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subround 3

subround 1

subround 2

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2

(a) without VGC (b) with VGC

can’t avoid massive subrounds

One subround = one round of synchronization overhead 

𝑛

𝑛



Offline & Online Peeling: Pros & Cons

33

-1
-1-1

-1



Offline & Online Peeling: Pros & Cons

34

buffers

…

…

-1
-1-1

-1

threads



Offline & Online Peeling: Pros & Cons
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…
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Offline & Online Peeling: Pros & Cons
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Offline & Online Peeling: Pros & Cons
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…

…
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Offline & Online Peeling: Pros & Cons
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…

…

buffers

threads



Offline & Online Peeling: Pros & Cons
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…

…

!
Buffers may be full, and it hurts load balance

Issue from the subround reduction

buffers

threads



Offline & Online Peeling: Pros & Cons
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𝑈1
𝑈2

𝑈4

𝑈3

𝑈5

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)
deg(V) =100000

…

contention 

𝑈100000



The Second Challenge: How to arrange the vertices?
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offline

online

0 1 2 3

Overflow bucket

k

k k+1 k+2 k+3

multi buckets

single frontier



The Second Challenge: How to arrange the vertices?
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offline

online

0 1 2 3

Overflow bucket

k

k k+1 k+2 k+3

more scans for all vertices

Less scans but more space for the buckets



Summary of Existing Solutions

• Existing offline-peeling solutions

• Existing online-peeling solutions
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Offline peeling

(Julienne [DBS’17])

Memory limitation for multi-bucket structure

Cannot avoid massive surrounds

Online peeling

(PKC [KM’17])

Not work-efficient

Heavy contention

Load imbalance (for unbounded buffers)

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17



Summary of Existing Solutions
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Can we get good performance on all types of graphs?

Offline peeling

(Julienne [DBS’17])

Memory limitation for multi-bucket structure

Cannot avoid massive surrounds

Online peeling

(PKC [KM’17])

Not work-efficient

Heavy contention

Load imbalance (for unbounded buffers)

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Bad Performance on 
large-diameter graphs

Bad Performance on 
dense graphs



Summary of Existing Solutions
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Offline peeling

(Julienne [DBS’17])

Online peeling

(PKC [KM’17])

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

unified 
framework?

Easy to implement 

Work-efficient

0 1 2 3
Overflow 
bucket histogram based offline peeling

k Atomic fetch-and-add oneline peeling



Our 𝑘-core decomposition framework
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alive vertices 𝐴

frontier 𝐹1

alive vertices 𝐴

Gather

 using parallel scan

pack the remaining vertices
 

as new 𝐴

alive vertices 𝐴

peeling subrounds 
using both online and 
offline strategies

frontier 𝐹2
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Our 
framework

Our Framework: adaptive for both peeling strategies

cannot avoid massive subrounds

Bad performance on graphs with a large number subrounds

high-volume concurrent 
atomic operations

1. Heavy contention
2. Load imbalance
(for unbounded buffer)

Previous online peeling
(FAA)

Previous offline peeling
(histogram)
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Our 
framework

Our Algorithm: Optimized Online-peeling

Online 
peeling

Allow multiple optimizations!
Offline 
peeling

Inherited issue: a large number of subrounds 
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Our 
framework

Our Algorithm: Optimized Online-peeling

Online 
peeling

Optimization 1:
2-parameter Sampling

Optimization 2:
Vertical Granularity Control

Reduce contention

Reduce #subrounds
&

Better load balance

Heavy contention

Load imbalance



How can we reduce the contention?
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Over the best sequential
𝑈1

𝑈2

𝑈4

𝑈3

𝑈5

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)

FAA(deg(v), -1)
deg(V) =100000

…

contention 

𝑈100000
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Technique 1: Sampling

…

High-volume contention while FAA_dec

Optimization 1:
Sampling

… …
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Technique 1: Sampling

…

High-volume contention

Optimization 1:
Sampling

… …FAA_decrease
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Technique 1: Sampling

…

Optimization 1:
Sampling

… …

FAA_decrease



Technique 1: Sampling
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…

… …

FAA_decrease

What is the difficulty of sampling 
in 𝑘-core decomposition?



Technique 1: Sampling
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…

… …

FAA_decrease

𝑣

0 𝑘𝑚𝑎𝑥 

𝑘 is increasing degree of 𝑣 is dropping

𝒌



Technique 1: Sampling
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…

… …

FAA_decrease

𝑣

𝑘𝑚𝑎𝑥 

degree of 𝑣 is dropping

𝑣

𝑣

𝑣

0

𝑘 is increasing

𝒌
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Technique 1: 2-parameter Sampling 

≤ 𝑘

counter value does not hit the threshold (still under sampling)

When will the error occur?

…

… …

counter

estimate

real neighbor deletions
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Technique 1: 2-parameter Sampling 

STOP sampling & Check the real induced degree (counting alive neighbors)

When the counter value is above a ratio w.r.t. 𝑘

Can we make sure the sampling  process is correct 
with high probability regarding |𝑉| ?

≤ 𝑘

…

… …
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Technique 1: 2-parameter Sampling 

…

𝑛 sampled vertices

Different starting and exiting 𝑘 value

Union-bound for the correctness of     sampled vertices

Pr 𝑠 <
𝑡𝑝

4
< 𝑛

−
𝑡𝑝

4 ln 𝑛Pr[stop before error]  = 

≤ 𝑘

…

… …



61

Technique 1: 2-parameter Sampling 

…

Pr 𝑠 <
𝑡𝑝

4
< 𝑛

−
𝑡𝑝

4 ln 𝑛Pr[stop before error]  = 

Errors indeed occur
We can detect the errors

Restart the entire algorithm with other parameters

≤ 𝑘

…

… …



Performance Comparison for Sampling
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Lower is better

96-core machine
(192 hyperthreads)
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Reduce #Subround: A Better Design?

Unbounded buffers -> load imbalance & overflow

buffers

…

…

!
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Technique 2: Vertical Granularity Control

Local queues with fixed sizes
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Technique 2: Vertical Granularity Control

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2

Local queues with fixed sizes
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Technique 2: Vertical Granularity Control

Local queues with fixed sizes

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2
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Technique 2: Vertical Granularity Control

Local queues with fixed sizes

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2
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Technique 2: Vertical Granularity Control

Local queues with fixed sizes

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2
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Technique 2: Vertical Granularity Control

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2

Local queues with fixed sizes
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Technique 2: Vertical Granularity Control

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2

Local queues with fixed sizes

For next round
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Technique 2: Vertical Granularity Control

In the fronter 
of subround 1

Visited in 
local queue

In the fronter 
of subround 2

Local queues with fixed sizes

Reduce #subrounds (for a ratio)

Load balance

Avoid overflow



Subround Reduction Ratio with VGC
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VGC Provides Significant Speed-Up

74

Higher is better



Summary: Two Optimizations

75

Optimization 2:
Vertical Granularity Control

Reduce #subrounds
&

Better load balance

Optimization 1:
2-parameter Sampling

Reduce contention

Further improvements?
Maintain vertices in a better structure?



Why do we need a better bucketing structure?

76

- Space issue; 
- Movements overhead - Large scan overhead

Fixed number of buckets

k k+1 k+2 k+3 overflow

large small

scan



Our Hierarchical Bucketing Structure (HBS)
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Bucket ID 4 …1 20 3

8~15 …0 4~7𝑘 = 0 or 1 2~31

Bucketing structure in a prefix-doubling manner
Range size  1, 1, 2, 4, 8, …

Each bucket holds a range of degrees 
instead of a cetain one



Our Hierarchical Bucketing Structure (HBS)
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Bucket ID 4… 1 20 3

8~15 …322 or 3

8~15 …544 or 5

…76 -6 or 7

…9 10~118 12~158 or 9 …

-

8~15 …0 4~7𝑘 = 0 or 1 2~31

-

8~15-

6~7 -

4~7

…

The new HBS can efficiently handle and balance all cases



Our Hierarchical Bucketing Structure (HBS)
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Bucket ID 4… 1 20 3

8~15 …322 or 3

8~15 …544 or 5

…76 -6 or 7

…9 10~118 12~158 or 9

-

8~15 …0 4~7𝑘 = 0 or 1 2~31

-

8~15-

6~7 -

4~7

𝑂(log 𝑑(𝑣))

k k+1 k+2 k+3
Overflow 
bucket

k

𝑂( 𝑚/𝑛) 𝑂(𝑑(𝑣))

fix-number bucketsHBS
single frontier

 (1 bucket)



HBS is overall better than the other two structures

80Lower is better



Experiments Setups

81

Complete tests 
on synthetic 
graphs

Large-scale 
real-world 
graphs

Experiments on the 
performance of each 
proposed technique

Experiments setup

• ParlayLib [1] for fork-join 
parallelism and primitives 

• 96-core (192 hyperthreads) 
machine with four Intel Xeon 
Gold 6252 CPUs

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib - A Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '20)



Our framework with all the techniques:
Better Overall Performance

82

Lower is better 96-core machine
(192 hyperthreads)



Conclusions: Work-efficient Framework 

• Summary

83

Our unified 
framework

Online peeling

Offline peeling

Work-efficient



Conclusions: Improvements on Our Framework

• Summary

84

Our unified 
framework

Online peeling

Offline peeling

optimizations

Better performance 
on all graphs

Our new 
Online-
peeling



Conclusions: Two Optimizations 

Our new 
Online-
peeling

Technique 1: sampling

For dense graphs For all types of graphs

Improve the contention issue

Technique 2: Vertical granularity control

Reduce #subrounds with better load balance

85



Conclusions: HBS – A Better Structure 

Our new Online-peeling

Technique 1: sampling

For dense graphs For all types of graphs

Improve the contention issue

Technique 2: Vertical granularity control

Reduce #subrounds with better load balance

A better bucketing structure
8~150 4~72~31
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Contact

87

• Code on GitHub:
• https://github.com/ucrparlay/PASGAL

• Contact
• Youzhe Liu (yliu908@ucr.edu) 

https://github.com/ucrparlay/Edit-Distance
https://github.com/ucrparlay/Edit-Distance
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