Parallel k-Core Decomposition:
Theory and Practice

Youzhe Liu, Xiaojun Dong, Yan Gu, Yihan Sun
University of California, Riverside

[T RIVERSIDE

How to Define Dense Subgraphs (formally)?

e k-core definition:

Given a graph G, k-core is the subgraph after removing
all the vertices with degrees smaller than k

1-core

2-core

3-core

How to Define Dense Subgraphs (formally)?

e k-core definition:

Given a graph G, k-core is the subgraph after removing
all the vertices with degrees smaller than k

1-core

2-core

3-core

How to Define Dense Subgraphs (formally)?

*k-core decomposition:

The process of listing all the k-core structures in the graph ¢

1-core

2-core

3-core

-core Is widely used

.
* . | D indivedual E proup averaged
. connectivity matrioe connectivity matrix
M Mgroup
C indivaddual
B T anatomical wrarsmical

A o7l p.1|\'.l’.".'l|!¢l' mtwark

Il cortical regions subcortical regions
[34 per homisphess) {7 per hermiphers)

<1
National Highway System (NHS)

——— Eisenhower nlarstate System
— Diher NHS

Community detection [1,2,3] Infra-network robustness [4] Strongly cohesive structure
in biology |[5,6]

[1] Marian Boguna, Romualdo Pastor-Satorras, Albert Di az Guilera, and Alex Arenas. 2004. Models of social networks based on social distance attachment. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 70, 5 (2004)
[2] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2on1. Evaluating cooperation in communities with the k-core structure. In 2011 International conference on advances in social networks analysis and mining.

[3] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H Eugene Stanley, and Hernd n A Makse. 2010. Identification of influential spreaders in complex networks. Nature physics 6, 11 (2010), 888-893.

[4] Kate Burleson-Lesser, Flaviano Morone, Maria S Tomassone, and Hernan A Makse. 2020. K-core robustness in ecological and financial networks. Scientific reports 10, 1 (2020), 3357.

[5] Yizong Cheng, Chen Lu, and Nan Wang. 2013. Local k-core clustering for gene networks. In 2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 9-15.

[6] Arnold I Emerson, Simeon Andrews, Ikhlak Ahmed, Thasni KA Azis, and Joel A Malek. 2015. K-core decomposition of a protein domain co-occurrence network reveals lower cancer mutation rates for interior cores. Journal of clinical
bioinformatics 5 (2015), 1-11.

Figure sources: Wikipedia

-core is a subroutine for many problems

* Dense subgraphs discovery [1]

Hierarchical graph clustering [2]

Graph degeneracy for graph learning [3]

Graph coloring [4]

[1] Ahmet Erdem Sariytice, C. Seshadhri, and Ali Pinar. 2018. Local algorithms for hierarchical dense subgraph discovery. Proc. VLDB Endow. 12, 1 (September 2018), 43-56. https://doi.org/10.14778/3275536.3275540

[2] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2014. CORECLUSTER: a degeneracy based graph clustering framework. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI'14). AAAI Press, 44-50.

[3] Guillaume Salha, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis. 2019. A degeneracy framework for scalable graph autoencoders. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI'19).

[4] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIc

https://doi.org/10.14778/3275536.3275540

Sequential Solutions

 Efficient sequential algorithm [szo3): follows the definition

1-core O\i ? 2-core

2-core . bin-sort (deg values)

1 2 3 4 5
3-core m

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). 7

3-core

Sequential Solutions

 Efficient sequential algorithm [szo3): follows the definition

1-core X\ |

2-core . bin-sort (deg values)

3-core m

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

1 2 3 4 5
@ O
3-core

Sequential Solutions

 Efficient sequential algorithm [szo3): follows the definition

1-core X\ |

2-core . bin-sort (deg values)

1 2 3 4 5
3-core m

O
3-core
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). 9

Sequential Solutions

 Efficient sequential algorithm [szo3): follows the definition

1-core X\ |

2-core . bin-sort (deg values)

1 2 3 4 5
3-core m

o
3-core
[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). 10

Sequential Solutions

 Efficient sequentlal algorithm [szo3: follows the definition
| o

9.9

N = - - ———

2-core .

3-core %

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

One subround

One round

3-core

Sequential Solutions

1-core ¢ 2-core

2-core . o O(|V| + |E|)

3-core
3-core E

Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). 12

The sizes of real-world graphs are very large

133 587 amne

Web graphs [1]:
Billions of edges

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph

13

http://webdatacommons.org/

The sizes of real-world graphs are very large

Web graphs [1]:
Billions of edges

Performance is important
for k-core decomposition!

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph

14

http://webdatacommons.org/

Multi-core Parallelism

TR
Queue, Uncore

Parallelism is ubiquitous and can
be used to accelerate algorithms

Figure credit: Wikipedia

15

Parallel Computational Model 1

« Shared-memory multi-core setting

. the total number of operations
e = running time on one core

* Work-efficient: The matches the
complexity of the best sequential algorithm

« Work-efficient is a primary goal for parallel
algorithm design

[1] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel algorithms in the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 89-102.

Challenges for Parallel k-core Solutions

» Existing sequential algorithm [szo3): follows the

definition; .. O\i . 2-core

2-core . bin-sort (deg values)

1 2 3 4 5
3-core m

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). !

3-core

7

Challenges for Parallel k-core Solutions

Challenges for Parallel k-core Solutions

1.

Framework: How to arrange & gather the vertices with target degree values

O | degree = 1

bin-sort (deg values)

The bin-sort-based array does not work in parallel

19

Challenges for Parallel k-core Solutions

————————————————————

2. Peeling in a subround: How to peel (remove) them in parallel

v
We need to process the signals of degree reduction in parallel

20

There are some existing parallel solutions

* Different parallel peeling strategies

« Offline-peeling: Juliennep;

* Online-peeling: ParKp;, PKCjs

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA 17
[2]Dasari, Naga Shailaja et al. “ParK: An efficient algorithm for k-core decomposition on multicore processors.” Big Data, 2014
[3] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017

Offline & Online Peeling

Qﬂ offline

decompose to 3-core

|

peel vertices with degree <3

Offline & Online Peeling

Qﬂ offline

decompose to 3-core

|

peel vertices with degree <3

Offline & Online Peeling

o N

decompose to 3-core

|

peel vertices with degree <3

Offline & Online Peeling

Qﬂ key-value pairs
. }

parallel histogram
offline (in a batch)

Q g \
degree reduction of neighbors (keys)

decompose to 3-core

|

peel vertices with degree <3

25

Offline & Online Peeling

key-value pairs
> Q% -2 1

-2 parallel histogram
offline (in a batch)

Q 8 \
degree reduction of neighbors (keys)
online
decompose to 3-core

‘ >

peel vertices with degree <3

26

Offline & Online Peeling

g key-value pairs
- -2 1

-2 parallel histogram
offline (in a batch)

Q 8 \
degree reduction of neighbors (keys)

Qﬂ— 1 fetch-and-add (atomic)
online -1l

decompose to 3-core FAA_dec() or FAA_inc()

‘ >
peel vertices with degree <3 an &

01 5y

Offline & Online Peeling

g key-value pairs
= -2 l

-2 parallel histogram
offline (in a batch)
Q 8 \
degree reduction of neighbors (keys)
, fetch-and-add
d to 3-core online Q%'l 1
ecompose -
P . -1yhd
' decrease degree directly

peel vertices with degree <3 (using atomic ops)

28

Offline & Online Peeling: Pros & Cons

Qﬂ key-value pairs Q&
offline Parallel histogram

1

degree reduction of neighbors (keys)

29

Offline & Online Peeling: Pros & Cons

key-value pairs
Qﬂ | Q/

offline Parallel histogram

1

degree reduction of neighbors (keys)

30

Offline & Online Peeling: Pros & Cons

key-value pairs
Qﬂ | Q.

offline Parallel histogram

| 1 | can’t avoid massive subrounds
degree reduction of neighbors (keys)

subround 1

subround 2

subround 3
31

Offline & Online Peeling: Pros & Cons

subround 1

subround 2 can’t avoid massive subrounds

subround 3

One subround = one round of synchronization overhead

32

Offline & Online Peeling: Pros & Cons

Offline & Online Peeling: Pros & Cons

buffers

i

threads

Offline & Online Peeling: Pros & Cons

buffers
aOM

i

threads

I

Offline & Online Peeling: Pros & Cons

buffers
aOM

\\
\,
\\ \ J \ J \ J \ J
\
\
\
\
\

threads

-

-~ S~
- SS
- ~o
~

Offline & Online Peeling: Pros & Cons

buffers

%O

i

threads

Offline & Online Peeling: Pros & Cons

buffers
aOM

)
N/

i

threads

Offline & Online Peeling: Pros & Cons

bufffrs

Issue from the subround reduction

Buffers may be full, and it hurts load balance

threads

39

Offline & Online Peeling: Pros & Cons

FAA(deg(v) \-1 %&A(deg(v),
d V)Y =100000
FAA(deg(v), -1)ee contention
FAA(deg(v), -1) .
FAA(de v), %
0000

40

The Second Challenge: How to arrange the vertices?

) LA EZI T T~
multi buckets S~ N

> ~
offline QO Q. "ok ks
online QO"\\\

41

The Second Challenge: How to arrange the vertices?

Overflow bucket

offline k+1 k+2 k+3

but more space for the buckets

online

> for all vertices

Summary of Existing Solutions

 Existing offline-peeling solutions
i ™
Offline peelin g Memory limitation for multi-bucket structure

k(J ulienne (pss17) Cannot avoid massive surrounds y

 Existing online-peeling solutions
4)

Not work-efficient

Online peeling

PKC kw17
(
Load imbalance (for unbounded buffers)

N\ J

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Heavy contention

Summary of Existing Solutions

-
Offline peeling
(Julienne pss'17))

Memory limitation for multi-bucket structure

Cannot avoid massive surrounds

N

}

Online peeling
(PKC km17))

.

Not work-efficient

Heavy contention

Load imbalance (for unbounded buffers)

~<

— Bad Pe?formance on
large-diameter graphs

—) Bad Performance on
dense graphs

Can we get good performance on all types of graphs?

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017

44

[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Summary of Existing Solutions

. . Over'flow
/ bucket
(

Offline peellng
(Julienne pss'17))

M~ unified

Online peeling | framework?
(PKC w17))

Work-efficient

o\

Easy to implement

)

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Our k-core decomposition framework

peeling subrounds
using both online and
offline strategies

Gather ack the remaining vertices

ﬁ ﬁ

using parallel scan as new A

' i : : Ive vertices A
alive vertices A alive vertices A alive vertices

Our Framework: adaptive for both peeling strategies

, _ , high-volume concurrent
Previous online peeling atomic operations

(FAA) 1
1. Heavy contention
- 2. Load imbalance
(for unbounded buffer)

Previous offline peeling™ cannot avoid massive subrounds
(histogram) l

Bad performance on graphs with a large number subrounds

47

Our Algorithm: Optimized Online-peeling

Allow multiple optimizations!

Inherited issue: a large number of subrounds

Our Algorithm: Optimized Online-peeling

Optimization 1:
Heavy contention 2-parameter Sampling

Optimization 2: J

Load imbalance { Vertical Granularity Control

Reduce contention

Reduce #subrounds
&
Better load balance

49

How can we reduce the contention?

Fad(deg(v), -1) Over the best sequential
FAA(deg(v) ,\-1) 3 Soca et

2
@\» deg(V)) =100000

FAA(deg(v), - 1

FAA(deg(V), N | S
@ FAA(de V) , - 0000 Speedup of PKC

contention -

Speedup

Technique 1: Sampling

|

|

Optimization 1:
Sampling

h-volume contention while FAA dec

Hig

Technique 1: Sampling

Optimization 1:
Sampling

O O%
O
FAA decrease O

High-volume contention

Technique 1: Sampling

|

FAA decrease

|

Optimization 1:
Sampling

Technique 1: Sampling

FAA decrease

LT 09
N //% What is the difficulty of sampling

e in k-core decomposition?

—
kmax

()

degree of v is dropping

ing
Leis increasing
k
0

Sampl
FAA decrease

"
—_ oy
—_— iy
-

Technique 1
O

55

degree of v is dropping
®

O

ing
Leis increasing
k
0

Sampl
FAA decrease

"
—_ oy
—_— iy
-

Technique 1
O

Technique 1: 2-parameter Sampling

When will the error occur?

real neighbor deletions

1
Ly
N M I ,
N \\ 1 ’ .
I
1

’f

counter value does not hit the threshold (still under sampling)

Technique 1: 2-parameter Sampling

4 v -
\\ 272 7 -7
\\\\\ \\ //,/ &”
R L%
Sah Y e
N ‘é’

‘When the counter value is above a ratio w.r.t. k
<k

STOP sampling & Check the real induced degree (counting alive neighbors)

Can we make sure the sampling process is correct
with high probability regarding |V | ?

Technique 1: 2-parameter Sampling

N7 %%y ©0000-00

So S N -
ORIt .
S§ A % n sampled vertices
<k Different starting and exiting k value

Union-bound for the correctness ofﬂ sampled vertices

tp __tp
Pr[stop before error] = Pr [5 < Z] <n 4lnn

60

Technique 1: 2-parameter Sampling

7% 0000-00

tp

t _
Pr[stop before error] = Pr [s < Zp] <n 4lnn

<k /

We can detect the errors

/

Restart the entire algorithm with other parameters

61

Performance Comparison for Sampling

Running time (s) Running time (s)
o o o
o o o

o

TW (3.02x)

~
Ul

e
o

N
Ul

HL14 (1.71x)

1.0;

0.51

0.0

150

100

50

0

EH (1.24x) SD (1.24x)
4
2.
0

HL12 (1.35%) HPL (1.55x)
2.
11
0

] without sampling

150/

100

50

0

CW (5.04x)

HCNS (0.80x)

I with sampling

96-core machine
(192 hyperthreads)

Reduce #Subround: A Better Design?

buffers

Unbounded buffers -> load imbalance & overflow

Technique 2: Vertical Granularity Control

i

Local queues with fixed sizes

Technique 2: Vertical Granularity Control

In the fronter
C)of subround 1
QO Visitedin

local queue

O In the fronter
of subround 2

Local queues with fixed sizes

Technique 2: Vertical Granularity Control

O @)

In the fronter
C)of subround 1
QO Visitedin

local queue

O In the fronter
of subround 2

Local queues with fixed sizes O

Technique 2: Vertical Granularity Control

O @)
O @)

In the fronter
C)of subround 1

QO Visitedin
local queue

O In the fronter
of subround 2

Local queues with fixed sizes

00O
Q0O

Technique 2: Vertical Granularity Control

@)
O

O

000

In the fronter
C)of subround 1
QO Visitedin

local queue

O In the fronter
of subround 2

000

Local queues with fixed sizes

00O

Technique 2: Vertical Granularity Control

0000
0000

In the fronter
C)of subround 1
QO Visitedin

local queue

A O In the fronter
of subround 2

0000

Local queues with fixed sizes

0000

Technique 2: Vertical Granularity Control

OO0 00
00000

In the fronter
C)of subround 1

QO Visitedin
local queue

O In the fronter
For next round of subround 2

00000

Local queues with fixed sizes

00000

Technique 2: Vertical Granularity Control

O In the fronter ® ®
of subround 1 O O
Visited in O O
local queue O O

O O

O In the fronter
of subround 2

Local queues with fixed sizes

OO00O0O0

Q0000

Subround Reduction Ratio with VGC

TLEEE L) R=7.5 OK R=9.1 EHR=5.1 . AFR=27.0
= O 1601 1200

: =40 801 600- 60

= g0 40- 300 30

: S. 0 . O e —— 0 oo 0 oo
: Si 0360912 0 36 912 40 80 0 2 4
: 2@ ASR=38.1 EU R=51.3 TRCE R=17.2 GRID R=39.0
= 52401 400+

: 1 1500_ 45000'

: Olso] 300

- S120 200 1000- 30000

s Y160 100- 500 15000-
I e
‘ ﬂlIIZIII4IIIIIIIIII60II120I 400 1200

[
[
[
[

o

N

D

= # subround with VGC

[]
]
‘IIIIIIIIIIIIIIIIIIIIIIIIII:

73

VGC Provides Significant Speed-Up

Road i k-NN Others
3 _
o H
-]
82
Q :
O : :
< e S D 9 V “ Q “ < N Q
v N v ¢ o) & > > ok & & &
1 pl

ain [with VGC

Summary: Two Optimizations

{ Gl I J Reduce contention
2-parameter Sampling

.. Reduce #subrounds
Optimization 2:
Vertical Granularity Control &
Better load balance

Further improvements?
Maintain vertices in a better structure?

75

Why do we need a better bucketing structure?

~——~—=, scan

Fixed number of buckets

large mall

- Space issue;

- Movements overhead - Large scan overhead
76

Our Hierarchical Bucketing Structure (HBS)

Bucket ID 0 1 2 3 4
k=0or1 0 1 2~3 4~7 | |8~15 ...

Bucketing structure in a prefix-doubling manner
Rangesize 1, 1, 2, 4, 8, ..

Our Hierarchical Bucketing Structure (HBS)

Bucket ID 0 1 2 3 4

k=0or1 0 1 2~3| 47| [8~15] .-
20r3 2 3 4~7| |[8~15] -
4or5 [4] [5] [67] [-] [8~15] -
6or7 [6] [7] [- | [8~15] .
8or9 [8] [9] [to-11] [12-15

The new HBS can efficiently handle and balance all cases

Our Hierarchical Bucketing Structure (HBS)

Bucket ID
k=0or"

20r3
40rd
6or7
8or9

8~15[---

8~15| ...

8~15| ...

8~15 oos

HBS
0 1 2 3 4
0 1 2~3| [4~7
2 3 4~7
4| [5] [6-7]
(6 | [7 3
8 | [9| [10-11] [12~15

fix-number buckets

(ol (o
bucket

0(ym/n)

single frontier
(1 bucket)

0(d(v))

HBS is overall better than the other two structures

29.15

3.01 3.21 437 B 1-bucket
= [1 16-bucket
= 2.5 [HBS

N
o

relative running
(@) (@) = =
o u o u
I
S
I
SIR
O E——
I
e
I

dataset

Lower IS better

Experiments Setups

Experiments setup Complete tests Large-scale

 ParlayLib [l for fork-join on synthetic real-world
parallelism and primitives graphs graphs

* 96-core (192 hyperthreads)
machine with four Intel Xeon Experiments on the

Gold 6252 CPUs performance of each
proposed technique

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib - A Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '20)

Relative running time
o = N w H

Our framework with all the techniques:
Better Overall Performance

Web) Road k-NN Others
o nin <

i
ml LN
Y = s | &
I il]]
Bl : ! |
I - I i i
| ! | ! !
I ! | :i I
- — — B =l - - f— = [— - — - - - T e e (o IR e o = _.-_I._-__-
!{ ﬁﬁ { i - ﬁTh il] i
| I 1
Vo Fr @ <8‘: L & & T R e VO & & @ IS
L -! -!I @) e 1
[Julienne ParK 1 PKC ---- Ours (scaledto 1) X running time > 2000s or out of memory

96-core machine
(192 hyperthreads)

Conclusions: Work-efficient Framework

« Summary
Online peeling

- Work-efficient

Offline peeling:

Conclusions: Improvements on Our Framework

Online peeling -
>
optimizations

Better performance
on all graphs

e SumMmmary

Conclusions: Two Optimizations

For dense graphs For all types of graphs

Technique 1 sampling Technique 2: Vertical granularity control

4 \,

Improve the contention issue Reduce #subrounds with better load balance

35

Conclusions: HBS — A Better Structure

For dense grap% \r all types of graphs

Technlque 1 samphng Technique 2: Vertlcal granularity control

Improve the COIlteIltIOIl issue Reduce #subrounds with better load balance

86

Contact

 Code on GitHub:
o https://github.com/ucrparlay/PASGAL

« Contact
* Youzhe Liu (yliu908@ucr.edu)

https://github.com/ucrparlay/Edit-Distance
https://github.com/ucrparlay/Edit-Distance

	幻灯片 1: Parallel 加粗斜体 k-Core Decomposition: Theory and Practice
	幻灯片 2: How to Define Dense Subgraphs (formally)?
	幻灯片 3: How to Define Dense Subgraphs (formally)?
	幻灯片 4: How to Define Dense Subgraphs (formally)?
	幻灯片 5: 加粗斜体 k-core is widely used
	幻灯片 6: 加粗斜体 k-core is a subroutine for many problems
	幻灯片 7: Sequential Solutions
	幻灯片 8: Sequential Solutions
	幻灯片 9: Sequential Solutions
	幻灯片 10: Sequential Solutions
	幻灯片 11: Sequential Solutions
	幻灯片 12: Sequential Solutions
	幻灯片 13: The sizes of real-world graphs are very large
	幻灯片 14: The sizes of real-world graphs are very large
	幻灯片 15: Multi-core Parallelism
	幻灯片 16: Parallel Computational Model [1]
	幻灯片 17: Challenges for Parallel k-core Solutions
	幻灯片 18: Challenges for Parallel k-core Solutions
	幻灯片 19: Challenges for Parallel k-core Solutions
	幻灯片 20: Challenges for Parallel k-core Solutions
	幻灯片 21: There are some existing parallel solutions
	幻灯片 22: Offline & Online Peeling
	幻灯片 23: Offline & Online Peeling
	幻灯片 24: Offline & Online Peeling
	幻灯片 25: Offline & Online Peeling
	幻灯片 26: Offline & Online Peeling
	幻灯片 27: Offline & Online Peeling
	幻灯片 28: Offline & Online Peeling
	幻灯片 29: Offline & Online Peeling: Pros & Cons
	幻灯片 30: Offline & Online Peeling: Pros & Cons
	幻灯片 31: Offline & Online Peeling: Pros & Cons
	幻灯片 32: Offline & Online Peeling: Pros & Cons
	幻灯片 33: Offline & Online Peeling: Pros & Cons
	幻灯片 34: Offline & Online Peeling: Pros & Cons
	幻灯片 35: Offline & Online Peeling: Pros & Cons
	幻灯片 36: Offline & Online Peeling: Pros & Cons
	幻灯片 37: Offline & Online Peeling: Pros & Cons
	幻灯片 38: Offline & Online Peeling: Pros & Cons
	幻灯片 39: Offline & Online Peeling: Pros & Cons
	幻灯片 40: Offline & Online Peeling: Pros & Cons
	幻灯片 41: The Second Challenge: How to arrange the vertices?
	幻灯片 42: The Second Challenge: How to arrange the vertices?
	幻灯片 43: Summary of Existing Solutions
	幻灯片 44: Summary of Existing Solutions
	幻灯片 45: Summary of Existing Solutions
	幻灯片 46: Our k-core decomposition framework
	幻灯片 47: Our Framework: adaptive for both peeling strategies
	幻灯片 48: Our Algorithm: Optimized Online-peeling
	幻灯片 49: Our Algorithm: Optimized Online-peeling
	幻灯片 50: How can we reduce the contention?
	幻灯片 51: Technique 1: Sampling
	幻灯片 52: Technique 1: Sampling
	幻灯片 53: Technique 1: Sampling
	幻灯片 54: Technique 1: Sampling
	幻灯片 55: Technique 1: Sampling
	幻灯片 56: Technique 1: Sampling
	幻灯片 58: Technique 1: 2-parameter Sampling
	幻灯片 59: Technique 1: 2-parameter Sampling
	幻灯片 60: Technique 1: 2-parameter Sampling
	幻灯片 61: Technique 1: 2-parameter Sampling
	幻灯片 62: Performance Comparison for Sampling
	幻灯片 63: Reduce #Subround: A Better Design?
	幻灯片 65: Technique 2: Vertical Granularity Control
	幻灯片 66: Technique 2: Vertical Granularity Control
	幻灯片 67: Technique 2: Vertical Granularity Control
	幻灯片 68: Technique 2: Vertical Granularity Control
	幻灯片 69: Technique 2: Vertical Granularity Control
	幻灯片 70: Technique 2: Vertical Granularity Control
	幻灯片 71: Technique 2: Vertical Granularity Control
	幻灯片 72: Technique 2: Vertical Granularity Control
	幻灯片 73: Subround Reduction Ratio with VGC
	幻灯片 74: VGC Provides Significant Speed-Up
	幻灯片 75: Summary: Two Optimizations
	幻灯片 76: Why do we need a better bucketing structure?
	幻灯片 77: Our Hierarchical Bucketing Structure (HBS)
	幻灯片 78: Our Hierarchical Bucketing Structure (HBS)
	幻灯片 79: Our Hierarchical Bucketing Structure (HBS)
	幻灯片 80: HBS is overall better than the other two structures
	幻灯片 81: Experiments Setups
	幻灯片 82: Our framework with all the techniques: Better Overall Performance
	幻灯片 83: Conclusions: Work-efficient Framework
	幻灯片 84: Conclusions: Improvements on Our Framework
	幻灯片 85: Conclusions: Two Optimizations
	幻灯片 86: Conclusions: HBS – A Better Structure
	幻灯片 87: Contact

