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How to Define Dense Subgraphs (formally)?

e k-core definition:

Given a graph G, k-core is the subgraph after removing
all the vertices with degrees smaller than k
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How to Define Dense Subgraphs (formally)?

*k-core decomposition:

The process of listing all the k-core structures in the graph ¢

1-core

2-core

3-core



-core Is widely used
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Community detection [1,2,3] Infra-network robustness [4] Strongly cohesive structure
in biology |[5,6]

[1] Marian Boguna, Romualdo Pastor-Satorras, Albert Di az Guilera, and Alex Arenas. 2004. Models of social networks based on social distance attachment. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 70, 5 (2004)
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[3] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H Eugene Stanley, and Hernd n A Makse. 2010. Identification of influential spreaders in complex networks. Nature physics 6, 11 (2010), 888-893.
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[5] Yizong Cheng, Chen Lu, and Nan Wang. 2013. Local k-core clustering for gene networks. In 2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 9-15.

[6] Arnold I Emerson, Simeon Andrews, Ikhlak Ahmed, Thasni KA Azis, and Joel A Malek. 2015. K-core decomposition of a protein domain co-occurrence network reveals lower cancer mutation rates for interior cores. Journal of clinical
bioinformatics 5 (2015), 1-11.

Figure sources: Wikipedia



-core is a subroutine for many problems

* Dense subgraphs discovery [1]

Hierarchical graph clustering [2]

Graph degeneracy for graph learning [3]

Graph coloring [4]

[1] Ahmet Erdem Sariytice, C. Seshadhri, and Ali Pinar. 2018. Local algorithms for hierarchical dense subgraph discovery. Proc. VLDB Endow. 12, 1 (September 2018), 43-56. https://doi.org/10.14778/3275536.3275540

[2] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2014. CORECLUSTER: a degeneracy based graph clustering framework. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI'14). AAAI Press, 44-50.

[3] Guillaume Salha, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis. 2019. A degeneracy framework for scalable graph autoencoders. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI'19).

[4] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph Coloring via Degeneracy in Streaming and Other Space-Conscious Models. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIc
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Sequential Solutions

 Efficient sequential algorithm [szo3): follows the definition

1-core O\i ? 2-core

2-core . bin-sort (deg values)

1 2 3 4 5
3-core m

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). 7
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Sequential Solutions
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Sequential Solutions

 Efficient sequentlal algorithm [szo3: follows the definition
| o

9.9

N = - - ———

2-core .

3-core %

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003).

One subround

One round

3-core



Sequential Solutions

1-core ¢ 2-core

2-core . o O(|V| + |E|)

3-core
3-core E

Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). 12



The sizes of real-world graphs are very large

133 587 amne

Web graphs [1]:
Billions of edges

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph
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The sizes of real-world graphs are very large

Web graphs [1]:
Billions of edges

Performance is important
for k-core decomposition!

Figure source: https://nightingaledvs.com/how-to-visualize-a-graph-with-a-million-nodes/

[1] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. 2014. Web Data Commons — Hyperlink Graphs. http://webdatacommons.org/ hyperlinkgraph
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Multi-core Parallelism

TR
Queue, Uncore

Parallelism is ubiquitous and can
be used to accelerate algorithms

Figure credit: Wikipedia
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Parallel Computational Model 1

« Shared-memory multi-core setting

. the total number of operations
e = running time on one core

* Work-efficient: The matches the
complexity of the best sequential algorithm

« Work-efficient is a primary goal for parallel
algorithm design

[1] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel algorithms in the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 89-102.



Challenges for Parallel k-core Solutions

» Existing sequential algorithm [szo3): follows the

definition; .. O\i . 2-core

2-core . bin-sort (deg values)

1 2 3 4 5
3-core m

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003). !

3-core
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Challenges for Parallel k-core Solutions



Challenges for Parallel k-core Solutions

1.

Framework: How to arrange & gather the vertices with target degree values

O | degree = 1

bin-sort (deg values)

The bin-sort-based array does not work in parallel

19



Challenges for Parallel k-core Solutions

————————————————————

____________________

2. Peeling in a subround: How to peel (remove) them in parallel

v
We need to process the signals of degree reduction in parallel

20



There are some existing parallel solutions

* Different parallel peeling strategies

« Offline-peeling: Juliennep;

* Online-peeling: ParKp;, PKCjs

[1] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA 17
[2]Dasari, Naga Shailaja et al. “ParK: An efficient algorithm for k-core decomposition on multicore processors.” Big Data, 2014
[3] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017



Offline & Online Peeling

Qﬂ offline

decompose to 3-core

|
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Offline & Online Peeling

Qﬂ key-value pairs
. }

parallel histogram
offline (in a batch)

Q g \
degree reduction of neighbors (keys)

decompose to 3-core

|

peel vertices with degree <3
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Offline & Online Peeling

key-value pairs
> Q% -2 1

-2 parallel histogram
offline (in a batch)

Q 8 \
degree reduction of neighbors (keys)
online
decompose to 3-core

‘ >

peel vertices with degree <3
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Offline & Online Peeling

g key-value pairs
- -2 1

-2 parallel histogram
offline (in a batch)

Q 8 \
degree reduction of neighbors (keys)

Qﬂ— 1 fetch-and-add (atomic)
online -1l

decompose to 3-core FAA_dec() or FAA_inc()

‘ >
peel vertices with degree <3 an &

01 5y




Offline & Online Peeling

g key-value pairs
= -2 l

-2 parallel histogram
offline (in a batch)
Q 8 \
degree reduction of neighbors (keys)
, fetch-and-add
d to 3-core online Q%'l 1
ecompose -
P . -1yhd
' decrease degree directly

peel vertices with degree <3 (using atomic ops)
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Offline & Online Peeling: Pros & Cons

Qﬂ key-value pairs Q&
offline Parallel histogram

1

degree reduction of neighbors (keys)
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Offline & Online Peeling: Pros & Cons

key-value pairs
Qﬂ | Q/

offline Parallel histogram

1

degree reduction of neighbors (keys)
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Offline & Online Peeling: Pros & Cons

key-value pairs
Qﬂ | Q.

offline Parallel histogram

| 1 | can’t avoid massive subrounds
degree reduction of neighbors (keys)

subround 1

subround 2

subround 3
31




Offline & Online Peeling: Pros & Cons

subround 1

subround 2 can’t avoid massive subrounds

subround 3

One subround = one round of synchronization overhead

32
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Offline & Online Peeling: Pros & Cons
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Offline & Online Peeling: Pros & Cons

buffers

%O
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Offline & Online Peeling: Pros & Cons

buffers
aOM

)
N/

i

threads




Offline & Online Peeling: Pros & Cons

bufffrs

Issue from the subround reduction

Buffers may be full, and it hurts load balance

threads

39



Offline & Online Peeling: Pros & Cons

FAA(deg(v) \-1 %&A(deg(v),
d V)Y =100000
FAA(deg(v), -1)ee contention
FAA(deg(v), -1) .
FAA(de v), %
0000

40



The Second Challenge: How to arrange the vertices?

) LA EZI T T~
multi buckets S~ N

> ~
offline QO Q. "ok ks
online QO"\\\

41



The Second Challenge: How to arrange the vertices?

Overflow bucket

offline k+1 k+2 k+3

but more space for the buckets

online

> for all vertices



Summary of Existing Solutions

 Existing offline-peeling solutions
i ™
Offline peelin g Memory limitation for multi-bucket structure

k(J ulienne (pss17) Cannot avoid massive surrounds y

 Existing online-peeling solutions
4 )

Not work-efficient

Online peeling

PKC kw17
(
Load imbalance (for unbounded buffers)

N\ J

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17

Heavy contention




Summary of Existing Solutions

-
Offline peeling
(Julienne pss'17))

Memory limitation for multi-bucket structure

Cannot avoid massive surrounds

N

}

Online peeling
(PKC km17))

.

Not work-efficient

Heavy contention

Load imbalance (for unbounded buffers)

~<

— Bad Pe?formance on
large-diameter graphs

—) Bad Performance on
dense graphs

Can we get good performance on all types of graphs?

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
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Summary of Existing Solutions

. . Over'flow
/ bucket
(

Offline peellng
(Julienne pss'17))

M~ unified

Online peeling | framework?
(PKC w17))

Work-efficient

o\

Easy to implement

)

[KM] H. Kabir and K. Madduri, "Parallel k-Core Decomposition on Multicore Platforms," IPDPSW, 2017
[DBS] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing, SPAA '17



Our k-core decomposition framework

peeling subrounds
using both online and
offline strategies

Gather ack the remaining vertices

ﬁ ﬁ

using parallel scan as new A

' i : : Ive vertices A
alive vertices A alive vertices A alive vertices



Our Framework: adaptive for both peeling strategies

, _ , high-volume concurrent
Previous online peeling atomic operations

(FAA) 1
1. Heavy contention
- 2. Load imbalance
(for unbounded buffer)

Previous offline peeling™ cannot avoid massive subrounds
(histogram) l

Bad performance on graphs with a large number subrounds

47



Our Algorithm: Optimized Online-peeling

Allow multiple optimizations!

Inherited issue: a large number of subrounds



Our Algorithm: Optimized Online-peeling

Optimization 1:
Heavy contention 2-parameter Sampling

Optimization 2: J

Load imbalance { Vertical Granularity Control

Reduce contention

Reduce #subrounds
&
Better load balance

49



How can we reduce the contention?

Fad(deg(v), -1) Over the best sequential
FAA(deg(v) ,\-1) 3 Soca et

2
@\» deg(V)) =100000

FAA(deg(v), - 1

FAA(deg(V), N | S
@ FAA(de V) , - 0000 Speedup of PKC

contention -

Speedup




Technique 1: Sampling

|

|

Optimization 1:
Sampling

h-volume contention while FAA dec

Hig



Technique 1: Sampling

Optimization 1:
Sampling

O O%
O
FAA decrease O

High-volume contention




Technique 1: Sampling

|

FAA decrease

|

Optimization 1:
Sampling




Technique 1: Sampling

FAA decrease

LT 09
N //% What is the difficulty of sampling

e in k-core decomposition?



—
kmax

()

degree of v is dropping

ing
Leis increasing
k
0

Sampl
FAA decrease

"
—_ oy
—_— iy
-

Technique 1
O
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degree of v is dropping
®

O

ing
Leis increasing
k
0

Sampl
FAA decrease

"
—_ oy
—_— iy
-

Technique 1
O



Technique 1: 2-parameter Sampling

When will the error occur?

real neighbor deletions

1
Ly
N M I ,
N \\ 1 ’ .
I
1

’f

counter value does not hit the threshold (still under sampling)



Technique 1: 2-parameter Sampling

4 v -
\\ 272 7 -7
\\\\\ \\ //,/ &”
R L%
Sah Y e
N ‘é’

‘When the counter value is above a ratio w.r.t. k
<k

STOP sampling & Check the real induced degree (counting alive neighbors)

Can we make sure the sampling process is correct
with high probability regarding |V | ?




Technique 1: 2-parameter Sampling

N7 %%y ©0000-00

So S N -
ORIt .
S§ A % n sampled vertices
<k Different starting and exiting k value

Union-bound for the correctness ofﬂ sampled vertices

tp __tp
Pr[stop before error] = Pr [5 < Z] <n 4lnn

60



Technique 1: 2-parameter Sampling

7% 0000-00

tp

t _
Pr[stop before error] = Pr [s < Zp] <n 4lnn

<k /

We can detect the errors

/

Restart the entire algorithm with other parameters

61



Performance Comparison for Sampling

Running time (s)  Running time (s)
o o o
o o o

o

TW (3.02x)

~
Ul

e
o

N
Ul

HL14 (1.71x)

1.0;

0.51

0.0

150

100

50

0

EH (1.24x) SD (1.24x)
4
2.
0

HL12 (1.35%) HPL (1.55x)
2.
11
0

] without sampling

150/

100

50

0

CW (5.04x)

HCNS (0.80x)

I with sampling

96-core machine
(192 hyperthreads)



Reduce #Subround: A Better Design?

buffers

Unbounded buffers -> load imbalance & overflow



Technique 2: Vertical Granularity Control

i

Local queues with fixed sizes



Technique 2: Vertical Granularity Control
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Local queues with fixed sizes
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Technique 2: Vertical Granularity Control
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O

000

In the fronter
C)of subround 1
QO Visitedin

local queue

O In the fronter
of subround 2

000

Local queues with fixed sizes
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Technique 2: Vertical Granularity Control

0000
0000

In the fronter
C)of subround 1
QO Visitedin

local queue

A O In the fronter
of subround 2

0000

Local queues with fixed sizes

0000



Technique 2: Vertical Granularity Control

OO0 00
00000

In the fronter
C)of subround 1

QO Visitedin
local queue

O In the fronter
For next round of subround 2

00000

Local queues with fixed sizes

00000



Technique 2: Vertical Granularity Control

O In the fronter ® ®
of subround 1 O O
Visited in O O
local queue O O

O O

O In the fronter
of subround 2

Local queues with fixed sizes

OO00O0O0

Q0000



Subround Reduction Ratio with VGC
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VGC Provides Significant Speed-Up

Road i k-NN Others
3 _
o H
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82
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Summary: Two Optimizations

{ Gl I J Reduce contention
2-parameter Sampling

.. Reduce #subrounds
Optimization 2:
Vertical Granularity Control &
Better load balance

Further improvements?
Maintain vertices in a better structure?

75



Why do we need a better bucketing structure?

~——~—=, scan

Fixed number of buckets

large mall

- Space issue;

- Movements overhead - Large scan overhead
76




Our Hierarchical Bucketing Structure (HBS)

Bucket ID 0 1 2 3 4
k=0or1 0 1 2~3 4~7 | |8~15 ...

Bucketing structure in a prefix-doubling manner
Rangesize 1, 1, 2, 4, 8, ..



Our Hierarchical Bucketing Structure (HBS)

Bucket ID 0 1 2 3 4

k=0or1 0 1 2~3| 47| [8~15] .-
20r3 2 3 4~7| |[8~15] -
4or5 [ 4] [5] [67] [ -] [8~15] -
6or7 [6 ] [7] [- | [8~15] .
8or9 [8 ] [ 9] [to-11] [12-15

The new HBS can efficiently handle and balance all cases



Our Hierarchical Bucketing Structure (HBS)

Bucket ID
k=0or"

20r3
40rd
6or7
8or9

8~15[  ---

8~15| ...

8~15| ...

8~15 oos

HBS
0 1 2 3 4
0 1 2~3| [4~7
2 3 4~7
4| [ 5] [6-7]
(6 | [ 7 3
8 | [ 9| [10-11] [12~15

fix-number buckets

(ol (o
bucket

0(ym/n)

single frontier
(1 bucket)

0(d(v))



HBS is overall better than the other two structures

29.15

3.01 3.21 437 B 1-bucket
= [ 1 16-bucket
= 2.5 [ HBS

N
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relative running
(@) (@) = =
o u o u
I
S
I
SIR
O E——
I
e
I

dataset

Lower IS better



Experiments Setups

Experiments setup Complete tests Large-scale

 ParlayLib [l for fork-join on synthetic real-world
parallelism and primitives graphs graphs

* 96-core (192 hyperthreads)
machine with four Intel Xeon Experiments on the

Gold 6252 CPUs performance of each
proposed technique

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib - A Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '20)



Relative running time
o = N w H

Our framework with all the techniques:
Better Overall Performance

Web ) Road k-NN Others
o nin <

i
ml LN
Y = s | &
I il ] ]
Bl : ! |
I - I i i
| ! | ! !
I ! | :i I
- — — B =l - - f— = [— - — - - - T e e (o IR e o = _.-_I._-__-
!{ ﬁﬁ { i - ﬁTh il ] i
| I 1
Vo Fr @ <8‘: L & & T R e VO & & @ IS
L -! -!I @) e 1
[ Julienne ParK 1 PKC ---- Ours (scaledto 1) X running time > 2000s or out of memory

96-core machine
(192 hyperthreads)



Conclusions: Work-efficient Framework

« Summary
Online peeling

- Work-efficient

Offline peeling:




Conclusions: Improvements on Our Framework

Online peeling -
>
optimizations

Better performance
on all graphs

e SumMmmary




Conclusions: Two Optimizations

For dense graphs For all types of graphs

Technique 1 sampling Technique 2: Vertical granularity control

4 \,

Improve the contention issue Reduce #subrounds with better load balance

35



Conclusions: HBS — A Better Structure

For dense grap% \r all types of graphs

Technlque 1 samphng Technique 2: Vertlcal granularity control

Improve the COIlteIltIOIl issue Reduce #subrounds with better load balance

86



Contact

 Code on GitHub:
o https://github.com/ucrparlay/PASGAL

« Contact
* Youzhe Liu (yliu908@ucr.edu)


https://github.com/ucrparlay/Edit-Distance
https://github.com/ucrparlay/Edit-Distance
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