Parallel Cluster-BFS and Applications to
Shortest Paths

Letong Wang*

Joint work with Guy Blelloch', Yan Gu*, Yihan Sun*

*: UC Riverside t1: Carnegie Mellon University

Definition of Cluster-BFS

* Breadth-first search (BFS) is one of the most important graph
processing subroutine

 Computing the unweighted distance

source: https://www.jvruo.com/archives/1877/

Definition of Cluster-BFS

* Breadth-first search (BFS) is one of the most important graph
processing subroutine

 Computing the unweighted distance

 Many applications may require running BFS from multiple sources
e Computing all pairs shortest paths (APSP)
e Constructing distance oracles for fast shortest distance query

Definition of Cluster-BFS

* Breadth-first search (BFS) is one of the most important graph
processing subroutine
 Computing the unweighted distance

 Many applications may require running BFS from multiple sources

e Computing all pairs shortest paths (APSP)
e Constructing distance oracles for fast shortest distance query

* One special variant of multi-source BFS is Cluster-BFS (C-BFS)

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously
e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

I
N

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

2
ST 5 A
e @ @ © 9 6 9 002006 @
2 8) 2 9

®

Q =
1l
N

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Definition of Cluster-BFS

* Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

e A cluster is a subset of vertices that are close to each other

e Cluster size is represented by k -- how large
e Cluster diameter is represented by d -- how close

Bitwise-parallelism shows efficiency in C-BFS

Algorithms Sources Contributions Parallelism

Chan’s BFS
[Chan’12]

Sequential C-BFS
[AlY’12]

Ligra BFS
[ShunBlelloch’13]

16

Bitwise-parallelism is efficient in C-BFS

Algorithms Sources Contributions Parallelism
Chan’s BFS A general cluster Theory Improvement Bitwise
[Chan’12] All pair shortest paths algorithm with

O (mn/logn) work
Sequential C-BFS Bitwise
[AlY’12]
Ligra BFS

[ShunBlelloch’13]

17

Bitwise-parallelism is efficient in C-BFS

Algorithms Sources Contributions Parallelism
Chan’s BFS A general cluster Theory Improvement Bitwise
[Chan’12] All pair shortest paths algorithm with

O (mn/logn) work
Sequential C-BFS A star-shaped cluster Efficient Implementation Bitwise
[AlY’12] Exact two-hop distance oracle
Ligra BFS

[ShunBlelloch’13]

18

Multi-threaded single-source BFS is highly

optimized
Algorithms Sources Contributions Parallelism
Chan’s BFS A general cluster Theory Improvement Bitwise
[Chan’12] All pair shortest paths algorithm with

O (mn/logn) work
Sequential C-BFS A star-shaped cluster Efficient Implementation Bitwise
[AlY’12] Exact two-hop distance oracle
Ligra BFS A single vertex Highly-Optimized Building Block Thread

[ShunBlelloch’13] Forward-backward optimization

19

How do bit-parallelism and thread-level
parallelism perform together?

Algorithms Sources Contributions Parallelism
Chan’s BFS A general cluster Theory Improvement Bitwise
[Chan’12] All pair shortest paths algorithm with

O (mn/logn) work
Sequential C-BFS A star-shaped cluster Efficient Implementation Bitwise
[AlY’12] Exact two-hop distance oracle
Ligra BFS A single vertex Highly-Optimized Building Block Thread

[ShunBlelloch’13]

Forward-backward optimization

Our algorithm

Bitwise + Thread

20

How do bit-parallelism and thread-level
parallelism perform together?

Algorithms Sources Contributions Parallelism
Chan’s BFS A general cluster Theory Improvement Bitwise
[Chan’12] All pair shortest paths algorithm with

O (mn/logn) work
Sequential C-BFS A star-shaped cluster Efficient Implementation Bitwise
[AlY’12] Exact two-hop distance oracle
Ligra BFS A single vertex Highly-Optimized Building Block Thread

[ShunBlelloch’13]

Forward-backward optimization

Our algorithm

A general cluster

Bitwise + Thread

21

How do bit-parallelism and thread-level
parallelism perform together?

Algorithms Sources Contributions Parallelism
Chan’s BFS A general cluster Theory Improvement Bitwise
[Chan’12] All pair shortest paths algorithm with

O (mn/logn) work
Sequential C-BFS A star-shaped cluster Efficient Implementation Bitwise
[AlY’12] Exact two-hop distance oracle
Ligra BFS A single vertex Highly-Optimized Building Block Thread

[ShunBlelloch’13]

Forward-backward optimization

Our algorithm

A general cluster

Theory Guarantee

Efficient Implementation
Highly-Optimized

Applications to Shortest Paths

Bitwise + Thread

22

Representation:
Cluster Distances

The property of ‘clusters’

* Fact: On an unweighted graph G = (V, E), if the distance
between vertex s; and s, is d, then for any vertex v € V/,

|6(Slr v) 6(S2) v)l = d

L\,

24

The property of ‘clusters’

* Fact: On an unweighted graph G = (V, E), if the distance
between vertex s; and s, is d, then for any vertex v € V/,

|6(Slr v) 6(S2) v)l = d

L\,

O,

25

The property of ‘clusters’

* Fact: On an unweighted graph G = (V, E), if the distance
between vertex s; and s, is d, then for any vertex v € V/,

|5(Slr v) 6(S2) v)l = d

d‘(S
b’ 2, Z))

0(S1,V)

26

The property of ‘clusters’

* Fact: On an unweighted graph G = (V, E), if the distance
between vertex s; and s, is d, then for any vertex v € V/,

|6(Slr v) 6(S2) v)l = d

28

The property of ‘clusters’

* Fact: On an unweighted graph G = (V, E), if the distance
between vertex s; and s, is d, then for any vertex v € V/,

|6(Slr v) 6(S2) v)l = d

29

The property of ‘clusters’

* Fact: On an unweighted graph G = (V, E), if the distance
between vertex s; and s, is d, then for any vertex v € V/,

|5(S1) v) 6(S2) v)l = d

—{6

* Corollary: On an unweighted graph ¢ = (V, E), given a set S of
vertices with diameter no more than d, for any vertex v € V,

max 6(s,v) —mindé(s,v) <d
SES SES

30

The property of ‘clusters’

* Corollary: On an unweighted graph ¢ = (V, E), given a set S of
vertices with diameter no more than d, for any vertex v € V,

max 6(s,v) —min 6(s,v) <d

SES SES
—6

S

31

The property of ‘clusters’

* Corollary: On an unweighted graph ¢ = (V, E), given a set S of
vertices with diameter no more than d, for any vertex v € V,

max 6(s,v) —min 6(s,v) <d

SES SES
—{6

S

cletA, = melsn 6(s,v), the distance between vandany s € S is
S

inrange [Ay, Ay + d]

32

The property of ‘clusters’

eletA, = melsn 6(s,v), the distance betweenvandany s € S is
S

inrange [A,, A, + d]

*Let §,[i] to be the subset of S that has distancestovas A, + i
Sylil ={s €S| 6(s,v) =A, +i}

* The distance from cluster S to vertex v can be represented by
tuple <Av, Sv [O, e d]> 33

Cluster Distance representations
* Let 5,|i] to be the subset of S that has distancestovasA, + i

Sylil ={s €S|6(s,v) =4, +i}

* The distance from cluster S to vertex v can be represented by
tuple<A,, 5,10, ...,d]|>

§(L,v) 82,v) 83B,v) 84v)
2 3 3 1

k words

@

1 word

Ay 5,01 S,[1] Sy[2]

() 1 0b0001 0b1000 0b0110 d + 2 words

l

1 word

34

Our Parallel Cluster-BFS

How to propagate BFS information?

* If u and v are neighbors, and there exists a path s ~» u with length i-1
* then, there exists a path s ~» v with length i

36

How to propagate BFS information?

* If u and v are neighbors, and there exists a path s ~» u with length i-1
* then, there exists a path s ~» v with length i

0b0001

37

How to propagate BFS information?

* If u and v are neighbors, and there exists a path s ~» u with length i-1
* then, there exists a path s ~» v with length i

0b0001 0b0001

38

How to propagate BFS information?

In round i:
* S.cenlV]: subset of S whose distances to v is smaller than i
* S.ext|V]: subset of S whose distances to v is smaller or equal to i

0b0001 0b0001

S

39

How to propagate BFS information?

In round i:
* S.cenlV]: subset of S whose distances to v is smaller than i
* S.ext|V]: subset of S whose distances to v is smaller or equal to i

OR
}\;\M/\met [v]

S

40

Our Cluster-BFS
* Step 1: Initialization
* Step 2: Traversing

e Put the sources to the first frontier.

* While the frontier is not empty:
* Step 2.1: Vertex Mapping
* Update cluster-distance
e Step 2.2: Edge Traversing
* Propagate BFS information and put updated vertices to the next frontier

41

Our Cluster-BFS: 1. Initialization

PEOeVOOe O

* A, « @

¢ Sseen[v] «— @
* For s €S, Spextls] < {s}; v € V\S, Spext|V]

17’0 {@@@)@}

Sucald] Sl
0b0000 0b000O0 00
ObO000 0b0000 o)
Ob0O000 0b0000 o0
0b0000 0b0000 o0
ObO000 0b0000 o
ObO000 0b0000 o
0b0000 0b0000 o
ObO000 0b0000 o0
ObO000 0b0000 o0

"’

42

Our Cluster-BFS: 1. Initialization

PEOeVOOe O

* A, « @

¢ Sseen[v] «— @
* For s €S, Spextls] < {s}; v € V\S, Spext|V]

17’0 {®®®@}

Sucald] Sl
0b0000 0b1000 00
ObO000 0b0100 o)
ObO000 0b0010 o0
0b0000 0b0001 0
ObO000 0b0000 o
ObO000 0b0000 o)
0b0000 0b0000 o
ObO000 0b0000 o0
ObO000 0b0000 o)

"’

43

Our Cluster-BFS: 2.1 Vertices Mapping

PEOeVOOe O

Fo={v @B W)

Sl Szl
0b0000 0b1000 o0
Ob0000 0Ob0100 o)
Ob0000 0b0010 o)
0b0000 0b0001 0
ObO000 0b0000 o
ObO000 0b0000 o
0b0000 0b0000 o
ObO000 0b0000 o0
ObO000 0b0000 o0

ParallelForEach u € F; do{
if A, = o0 then {A, =i}
Sv [i — Au] < Snext [u]/Sseen [u]
Sseen [u] < Sseen[u] U Snext [u]

¥

44

Our Cluster-BFS: 2.1 Vertices Mapping

PEOeVOOe O

Fo={v @B W)

Sl Szl
ObO000 0b1000 0
ObO000 0b0100 0
Ob0O000 0b0010 0
0b0000 0b0001 0
ObO000 0b0000 o
ObO000 0b0000 o
0b0000 0b0000 o
ObO000 0b0000 o0
ObO000 0b0000 o0

ParallelForEach u € F; do{
if A, = then {A, =i}
Sv [i — Au] < Snext [u]/Sseen [u]
Sseen [u] < Sseen[u] U Snext [u’]

¥

45

Our Cluster-BFS: 2.1 Vertices Mapping

PEOeVOOe O

@"(6 Fo={v @ B @}

ParallelForEach u € F; do{
if A, = o0 then {A, =i}
Sv[i o Au] < Snext [u]/Sseen [u]
Sseen [u] < Sseen[u] U Snext [u]

¥

Snext V] \ Sseen[V]: subset of § whose distance to v is i

46

@) 9)

7
Sl Szl
ObO000 0b1000 0 O0b1000
ObO000 0b0100 0 0b0100
Ob0O000 0b0010 0 0b0010
0b0000 0b0001 0 O0b0001
ObO000 0b0000 o
ObO000 0b0000 o
0b0000 0b0000 o
ObO000 0b0000 o0
ObO000 0b0000 o0

Our Cluster-BFS: 2.1 Vertices Mapping

PEOeVOOe O

Fo={v @B W)

ParallelForEach u € F; do{
if A, = o0 then {A, =i}
Sv [i — Au] < Snext [u]/Sseen [u]
Sseen[u] « Sseen[u] U Snext [u’]

¥

SseenV] Snexiv] A, S,00] S,[1] S,[2]
Ob1000 0Ob1000 0 0b1000

0b0100 0Ob0100 0 0b0100

0b0010 0Ob0010 0 0b0010

Ob0001 Ob0001 0 0b0001

Ob0000 0Ob0000 o

Ob0000 0Ob000O0 o

Ob0000 0b000O0 o

Ob0000 0Ob0000 o

Ob0000 0Ob000O0 o

47

Our Cluster-BFS: 2.2 Edge Traversing

PEOeVOOe O

@"‘Q Fo={v @ B @}

ParallelForEach u € F; do{
ParallelForEach v € N(u) do{

if FetchAndOR(S,,ext[V], Sseenltt]){

Fiv1 =Fiy1 U{v}
}

}
¥

@) 9)
7

Secalv) Socal?
Ob1000 0b1000 0 0b1000
Ob0100 0b0100 0 0b0100
Ob0010 0b0010 0 0b0010
0b0001 0b0001 0 0Ob0001
ObO000 0b0000 o)

ObO000 0b0000 o)

0b0000 0b0000 o0

ObO000 0b0000 o)

ObO000 0b0000 o)

48

Our Cluster-BFS: 2.2 Edge Traversing

PEOeVOOe O

Fo={® @B W)

ParallelForEach u € F; do{
ParallelForEach v € N(u) do{

if FetchAndOR(S,cxtlV],Sceenltt]){

Fiv1 =Fiy1 U{v}
}

}
¥

Secalv) Socaly
0b1000 0b1000 0 0b1000

Ob0100 0b1100 0 0b0100

Ob0010 O0b1010 0 0b0010

Ob0001 0b1001 0 0b0001

ObO000 0b1000 o)

ObO000 0b1000 o)

0b0000 0b0000 o0

ObO000 0b0000 o)

ObO000 0b0000 o)

49

Our Cluster-BFS: 2.2 Edge Traversing
Fo={D @ G @} “rmistrerenar S Il ao

if FetchAndOR(S,cxtlV],Sceenltt]){

F. = Fror = Fipy U)
1 {%@le)@@ } E

PEOeVOOe O

¥
Sseon[V] _ SnexelV
Ob1000 Ob1111 0 0Ob1000
Ob0100 0Ob1100 0 0b0100
Ob0010 0Ob1010 0 0b0010
Ob0001 Ob1001 0 0b0001
Ob0000 Ob1100 o
Ob0000 0Ob1110 o
Ob0000 0Ob0001 o
Ob0000 0Ob0000 o
Ob0000 0Ob000O0 o >3

Our Cluster-BFS: Traversing Optimization

Forward Traversing

ParallelForEach u € F; do{
ParallelForEach v € N(u) do{
if FetchAndOR(S, ext|V],sSseenltt]){
Fiz1 = Fiy1 U {v}
}
}
}

Backward Traversing

ParallelForEach v €V do{
ParallelForEach ue N(v) and u € F; do{
it Shext [v] « Shext [v] U Sseen [ul{
Fivr = Fiz U{V}
}
}
}

54

Our Cluster-BFS: Traversing Optimization

Forward Traversing

}
¥

ParallelForEach u € F; do{
ParallelForEach v € N(u) dof{

if |[FetchAndOR(S,,cxt V], Sseenltt])

Fiy1 = Fiz1 U {v}
}

Backward Traversing

Atomic Operation
1 random read+write: S,,..:[V]

Parall
if
}

}
}

elForEach v eV do{

ParallelForEach ue N(v) and u € F; do{

Snext [v] < Snext [v] U Sseen[u]{
Fiv1 = Fip1 U{V}

Normal Operation
1 random read: S, on U]

55

Applications: Approximate
Distance Oracles (ADO) for
Unweighted Graphs

ADO based on Landmark Labeling

 Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

* The basic idea is to select a subset H of vertices as landmarks, and
compute the distance from landmark to all the vertices

* i.e.compute 8(h,v), Vh € HandVv €V
* Answering query(u,v):

query(2,9) =
* minycy 6(h,v) + 6(h,u)

2

4
1
2
1

N O —
S NN
= W N k=
= a N PB=

3 5
1 1 1
1 1 2
3 3 3

58

ADO based on Landmark Labeling

 Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

* The basic idea is to select a subset H of vertices as landmarks, and
compute the distance from landmark to all the vertices

* i.e.compute 8(h,v), Vh € HandVv €V

* Answering query(u, v): query(2,9) = min {3,2,4}
° minheH S(h) v) + 5(h' u)

2 3 4 5 6 7 8 9

1 1 1 1 1 2 2 2 3
1 1 2 2 0 2 3 1 2
3 3 1 3 2 0 1 1 4

59

ADO based on Landmark Labeling

 Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

* The basic idea is to select a subset H of vertices as landmarks, and
compute the distance from landmark to all the vertices

* i.e.compute 8(h,v), Vh € HandVv €V

* Answering query(u, v): query(2,9) = min {3,2,4}
° minheH S(h) v) + 5(h' u)

2 3 4 5 6 7 8 9

1 1 1 1 1 2 2 2 3
1 1 2 2 0 2 3 1 2
3 3 1 3 2 0 1 1 4

* The more landmarks selected, the more accurate the answers will be

Our ADO based on Cluster Landmark Labeling

 Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

 We select a cluster as a landmark instead of a vertex, and store the
cluster-distances to all vertices v € V
* Answering query(u,v):
* First, find minimum distance between u and v through a cluster
* Then, find the minimum value among all clusters

cluster 1 2 3

Sa ALSi[1,..d] A, S,[1,..d] As Ss[l,..d]
Sy ALS[1,..d] Ay Sy[1,..d] As Ss[1,..d]

61

Experiments

Setup

* Machine:
* 96 cores
* 1.5 TB memory

* Graphs:

* 18 undirected graphs, which are either social or web graphs with low diameters

63

Microbenchmarks for Cluster-BFS

* Tested on 10 random clusters of size k=64 and d=2 and took the average

* Baselines:
* Plain: the standard sequential single source BFS
e AIY[AIY’12]: sequential cluster-BFS — only with bitwise-parallelism
* Ligra[ShunBlelloch’13]: parallel single-source BFS — only with thread-parallelism

Speedup Over the Standard Sequential BFS

1018 927 973 1119 856 945
1024 448 497 712 a53 21 688 813 500
185 188
256 102 103 159
0 9
64 51 20 233 282 21 320 28 > 227 231 2 227
- I I I I II I I I I| I| I [I II I| [I I I
EP SLDT DBLP YT INO4 LJ FBUU FBKN OK INDO EU FT Mean

m AlY -ngra Parallel C-BFS

64

Microbenchmarks for Cluster-BFS

 Tested on 10 random clusters with size k=64 and d=2 and took the average

* Baselines:
* Plain: the standard sequential single source BFS
e AIY[AIY’12]: sequential cluster-BFS — only with bitwise-parallelism
 Ligra[ShunBlelloch’13]: parallel single-source BFS — only with thread-parallelism

+ bit-parallelism Sequ[eA“(i’ilzﬁ—BFS
224X 1.43s
4 N
Plain " : _ - Our parallel
Sequential BFS +bit-parallelism & thread-level parallelism CPBFS
| 31.96s 500X 0.064s

27 0 X Parallel BFS (Ligra)
[ShunBlelloch’13]
+ multithreaded 1.18s

parallelism
65

Microbenchmarks for Cluster-BFS

* Scalability

o DBLP INDO

o 2°-

5 L) UK

§z3 HW AR

o FBUU TW
1]

A2 OK SD

10 WS PR %\/’L ’Lb‘ bfb o)bqé\
Number of Cores

66

Approximate Landmark Labeling

 Comparison between cluster-based landmark labeling with Plain

* Control the index size to be same (1024 bytes/vertex), and compare preprocessing
time and accuracy

Index Time (s) e (%) __query (u,v) 1
Data Plain /k = 64 k=8 Plain /k =64 k =8\ B o(u,v) Bt
EP 1.26 0.02 0.08 0.4 0.1 0.1 Sma“er |S better
SLDT | 1.15| 0.02 0.07 0.7 0.1 0.1
DBLP | 357| 0.08 0.25 2.5 2.2 1.0
YT 9.22 | 0.23 0.59 0.3 0.3 0.1
SK 13.4| 055 1.77 1.4 0.7 04
INO4 20.0| 0.96 3.88 2.1 1.9 0.9
LJ 36.2| 1.72 5.63 5.0 43 3.5
HW 12.4| 093 4.10 10.6 56 7.1
FBUU 138 | 11.3 27.0 [6.2 11.9 6.9
FBKN | 127 | 10.5 24.9 6.2 11.9 6.9
OK 26.3 | 2.87 10.1 8.7 77 7.3
INDO | 83.2| 544 29.8 3.1 1.5 1.3
EU 87.3| 7.01 349 2.6 1.3 1.7
UK 80.4 | 828 38.8 [3.9 4.9] 3.1
AR 148 | 17.6 86.8 2.6 4.0 2.2
TW 112 | 31.0 99.3 1.5 1.4 1.1
FT 251 | 61.1 193 16.8 12.4 12.8
SD 318 \ 756 255) 0.6 _ 0.3 0.3 67

Approximate Landmark Labeling

* The Performance of Different d on Landmark Labeling
* Control the index size to be same, compare the preprocessing time and accuracy.

Construction Time (s) Distortion € (%)
Data | Pland=2d=3d=4\| Plaind=2d=3d =4
EP 1.26] 0.03 0.02 0.02 0.4 0.1 0.2 0.2

SLDT 1.15| 0.02 0.02 0.02 0.7/ 0.1 04 0.6
DBLP 3.57| 0.09 0.07 0.06 25| 22 34 4.0

YT 9.22]1 0.23 0.19 0.17 03] 03 06 0.8
SK 13.4| 0.58 0.41 0.37 1.4 0.7 15 21
INO4 20.01 1.06 0.70 0.58 21 19 24 26
LJ 36.2| 1.79 1.41 1.26 5.0 43 5.5 6.0
HW 12.4| 0.99 0.75 0.63 10.6) 5.6 6.5 7.0

FBUU 138| 11.7 9.31 8.26 6.2 11.9 13.4 15.9
FBKN 127| 10.8 8.82 7.52 6.2 11.9 13.5 16.0

OK 26.3| 3.05 2.65 2.32 87 7.7 75 76
INDO 83.2] 6.09 3.92 3.40 3.1 15 22 26
EU 87.3| 8.00 6.33 5.55 26 1.3 19 22
UK 80.4| 9.06 6.63 5.90 39| 49 53 5.6
AR 148| 194 13.4 11.7 26/ 40 6.8 7.1
TW 112| 31.0 27.8 23.9 1.5 14 15 1.8
FT 251| 61.1 52.0 45.8 16.8| 12.4 13.7 14.6

SD 318\75.6 61.2 53.1/| 0.6_0.3 0.8 0.9 o8

Ssummary

* Present a parallel implementation for cluster-BFS
* The first one that combines the bitwise-parallelism and thread-parallelism

* The implementation is highly efficient that both techniques still fully contribute to the
performance

e Applications: Distance Oracles

* By applying cluster-BFS, the landmark labeling-based ADO improves preprocessing
time and accuracy

* Our cluster-BFS is the first implementation support clusters with general d
* We tested the performance of cluster BFS-based ADO under different d

70

	幻灯片 1: Parallel Cluster-BFS and Applications to Shortest Paths
	幻灯片 2: Definition of Cluster-BFS
	幻灯片 3: Definition of Cluster-BFS
	幻灯片 4: Definition of Cluster-BFS
	幻灯片 5: Definition of Cluster-BFS
	幻灯片 6: Definition of Cluster-BFS
	幻灯片 7: Definition of Cluster-BFS
	幻灯片 8: Definition of Cluster-BFS
	幻灯片 9: Definition of Cluster-BFS
	幻灯片 10: Definition of Cluster-BFS
	幻灯片 11: Definition of Cluster-BFS
	幻灯片 12: Definition of Cluster-BFS
	幻灯片 13: Definition of Cluster-BFS
	幻灯片 14: Definition of Cluster-BFS
	幻灯片 15: Definition of Cluster-BFS
	幻灯片 16: Bitwise-parallelism shows efficiency in C-BFS
	幻灯片 17: Bitwise-parallelism is efficient in C-BFS
	幻灯片 18: Bitwise-parallelism is efficient in C-BFS
	幻灯片 19: Multi-threaded single-source BFS is highly optimized
	幻灯片 20: How do bit-parallelism and thread-level parallelism perform together?
	幻灯片 21: How do bit-parallelism and thread-level parallelism perform together?
	幻灯片 22: How do bit-parallelism and thread-level parallelism perform together?
	幻灯片 23: Representation: Cluster Distances
	幻灯片 24: The property of ‘clusters’
	幻灯片 25: The property of ‘clusters’
	幻灯片 26: The property of ‘clusters’
	幻灯片 28: The property of ‘clusters’
	幻灯片 29: The property of ‘clusters’
	幻灯片 30: The property of ‘clusters’
	幻灯片 31: The property of ‘clusters’
	幻灯片 32: The property of ‘clusters’
	幻灯片 33: The property of ‘clusters’
	幻灯片 34: Cluster Distance representations
	幻灯片 35: Our Parallel Cluster-BFS
	幻灯片 36: How to propagate BFS information?
	幻灯片 37: How to propagate BFS information?
	幻灯片 38: How to propagate BFS information?
	幻灯片 39: How to propagate BFS information?
	幻灯片 40: How to propagate BFS information?
	幻灯片 41: Our Cluster-BFS
	幻灯片 42: Our Cluster-BFS: 1. Initialization
	幻灯片 43: Our Cluster-BFS: 1. Initialization
	幻灯片 44: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 45: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 46: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 47: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 48: Our Cluster-BFS: 2.2 Edge Traversing
	幻灯片 49: Our Cluster-BFS: 2.2 Edge Traversing
	幻灯片 53: Our Cluster-BFS: 2.2 Edge Traversing
	幻灯片 54: Our Cluster-BFS: Traversing Optimization
	幻灯片 55: Our Cluster-BFS: Traversing Optimization
	幻灯片 56: Applications: Approximate Distance Oracles (ADO) for Unweighted Graphs
	幻灯片 58: ADO based on Landmark Labeling
	幻灯片 59: ADO based on Landmark Labeling
	幻灯片 60: ADO based on Landmark Labeling
	幻灯片 61: Our ADO based on Cluster Landmark Labeling
	幻灯片 62: Experiments
	幻灯片 63: Setup
	幻灯片 64: Microbenchmarks for Cluster-BFS
	幻灯片 65: Microbenchmarks for Cluster-BFS
	幻灯片 66: Microbenchmarks for Cluster-BFS
	幻灯片 67: Approximate Landmark Labeling
	幻灯片 68: Approximate Landmark Labeling
	幻灯片 70: Summary

