
Parallel Cluster-BFS and Applications to
Shortest Paths

Letong Wang*

*: UC Riverside

Joint work with Guy Blelloch
†
, Yan Gu*, Yihan Sun*

†: Carnegie Mellon University

Definition of Cluster-BFS

source: https://www.jvruo.com/archives/1877/

• Breadth-first search (BFS) is one of the most important graph
processing subroutine
• Computing the unweighted distance

2

Definition of Cluster-BFS

• Breadth-first search (BFS) is one of the most important graph
processing subroutine
• Computing the unweighted distance

• Many applications may require running BFS from multiple sources
• Computing all pairs shortest paths (APSP)

• Constructing distance oracles for fast shortest distance query

3

Definition of Cluster-BFS

• Breadth-first search (BFS) is one of the most important graph
processing subroutine
• Computing the unweighted distance

• Many applications may require running BFS from multiple sources
• Computing all pairs shortest paths (APSP)

• Constructing distance oracles for fast shortest distance query

• One special variant of multi-source BFS is Cluster-BFS (C-BFS)

4

Definition of Cluster-BFS

1
3

2

5

4

6

9

7
8

5

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

6

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

1
3

2

5

4

6

9

7
8

Definition of Cluster-BFS

1
3

2

5

4

6

9

7
8

7

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

8

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6

978

1

3

2

5

4

6

9

7

8

1

3

25 4

6

9

78

1

325

4

6 9

7

8

9

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6

978

1

3

2

5

4

6

9

7

8

1

3

25 4

6

9

78

1

325

4

6 9

7

8

10

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6

978

1

3

2

5

4

6

9

7

8

1

3

25 4

6

9

78

1

325

4

6 9

7

8

11

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6
978

1

3

2

5

4

6
9

7

8

1

3

25 4

6
9

78

1

325

4

6 9

7

8

12

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6
978

1

3

2

5

4

6
9

7

8

1

3

25 4

6
9

78

1

325

4

6 9

7

8

13

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6
978

1

3

2

5

4

6
9

7

8

1

3

25 4

6
9

78

1

325

4

6 9

7

8

1 1 1 0

14

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Definition of Cluster-BFS

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

1

325 4 6
978

1

3

2

5

4

6
9

7

8

1

3

25 4

6
9

78

1

325

4

6 9

7

8

1 1 1 0

Bitwise-parallelism

15

• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌 -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously

Bitwise-parallelism shows efficiency in C-BFS

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

Sequential C-BFS

[AIY’12]

Ligra BFS

[ShunBlelloch’13]

16

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

Bitwise

Ligra BFS

[ShunBlelloch’13]

17

Bitwise-parallelism is efficient in C-BFS

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

A star-shaped cluster Efficient Implementation

Exact two-hop distance oracle

Bitwise

Ligra BFS

[ShunBlelloch’13]

18

Bitwise-parallelism is efficient in C-BFS

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

A star-shaped cluster Efficient Implementation

Exact two-hop distance oracle

Bitwise

Ligra BFS

[ShunBlelloch’13]

A single vertex Highly-Optimized Building Block

Forward-backward optimization

Thread

19

Multi-threaded single-source BFS is highly
optimized

How do bit-parallelism and thread-level
parallelism perform together?
Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

A star-shaped cluster Efficient Implementation

Exact two-hop distance oracle

Bitwise

Ligra BFS

[ShunBlelloch’13]

A single vertex Highly-Optimized Building Block

Forward-backward optimization

Thread

Our algorithm Bitwise + Thread

20

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

A star-shaped cluster Efficient Implementation

Exact two-hop distance oracle

Bitwise

Ligra BFS

[ShunBlelloch’13]

A single vertex Highly-Optimized Building Block

Forward-backward optimization

Thread

Our algorithm A general cluster Bitwise + Thread

21

How do bit-parallelism and thread-level
parallelism perform together?

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

A star-shaped cluster Efficient Implementation

Exact two-hop distance oracle

Bitwise

Ligra BFS

[ShunBlelloch’13]

A single vertex Highly-Optimized Building Block

Forward-backward optimization

Thread

Our algorithm A general cluster Theory Guarantee

Efficient Implementation

Highly-Optimized

Applications to Shortest Paths

Bitwise + Thread

22

How do bit-parallelism and thread-level
parallelism perform together?

Representation:
Cluster Distances

23

The property of ‘clusters’

24

• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽,
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.

𝑠1

𝑠2

The property of ‘clusters’

25

• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽,
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.

𝑠1

𝑠2

𝑣

The property of ‘clusters’

26

• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽,
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.

𝑠1

𝑠2

𝑣
𝛿(𝑠1, 𝑣)

The property of ‘clusters’

28

• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽,
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.

1
3

2

4

𝑑 = 2

𝑆

The property of ‘clusters’

29

• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽,
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.

1
3

2

4

6

𝑑 = 2

𝑆

𝑣

The property of ‘clusters’

30

• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽,
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.

1
3

2

4

6

𝑑 = 2

𝑆

• Corollary: On an unweighted graph 𝑮 = (𝑽, 𝑬), given a set 𝑺 of
vertices with diameter no more than 𝒅, for any vertex 𝒗 ∈ 𝑽,

max
𝑠∈𝑆

 𝛿 𝑠, 𝑣 − min
𝑠∈𝑆

 𝛿 𝑠, 𝑣 ≤ 𝑑

𝑣

The property of ‘clusters’

31

1
3

2

4

6

𝑑 = 2

𝑆

• Corollary: On an unweighted graph 𝑮 = (𝑽, 𝑬), given a set 𝑺 of
vertices with diameter no more than 𝒅, for any vertex 𝒗 ∈ 𝑽,

𝑣

max
𝑠∈𝑆

 𝛿 𝑠, 𝑣 − min
𝑠∈𝑆

 𝛿 𝑠, 𝑣 ≤ 𝑑

The property of ‘clusters’

32

1
3

2

4

6

𝑑 = 2

𝑆

• Corollary: On an unweighted graph 𝑮 = (𝑽, 𝑬), given a set 𝑺 of
vertices with diameter no more than 𝒅, for any vertex 𝒗 ∈ 𝑽,

𝑣

max
𝑠∈𝑆

 𝛿 𝑠, 𝑣 − min
𝑠∈𝑆

 𝛿 𝑠, 𝑣 ≤ 𝑑

• Let 𝚫𝒗 = 𝐦𝐢𝐧
𝒔∈𝑺

 𝜹 𝒔, 𝒗 , the distance between 𝒗 and any 𝒔 ∈ 𝑺 is

in range [𝚫𝐯, 𝚫𝐯 + 𝒅]

The property of ‘clusters’

33

1
3

2

4

6

𝑑 = 2

𝑆

𝑣

𝑆𝑣 𝑖 = {𝑠 ∈ 𝑆| 𝛿 𝑠, 𝑣 = Δ𝑣 + 𝑖}

• Let 𝚫𝒗 = 𝐦𝐢𝐧
𝒔∈𝑺

 𝜹 𝒔, 𝒗 , the distance between 𝒗 and any 𝒔 ∈ 𝑺 is

in range [𝚫𝐯, 𝚫𝐯 + 𝒅]

• Let 𝑺𝒗[𝒊] to be the subset of 𝑺 that has distances to 𝒗 as 𝚫𝒗 + 𝒊

• The distance from cluster 𝑺 to vertex 𝒗 can be represented by
tuple <𝚫𝒗, 𝑺𝒗[𝟎, … , 𝐝]>

Cluster Distance representations

34

𝑘 = 4

𝑑 = 2

1
3

2

5

4

6

9

7
8

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

1 0b0001 0b1000 0b0110

7

7

𝜹(𝟏, 𝒗) 𝜹(𝟐, 𝒗) 𝜹(𝟑, 𝒗) 𝜹(𝟒, 𝒗)

2 3 3 1 𝑘 words

𝑑 + 2 words

1 word

1 word

𝑆𝑣 𝑖 = {𝑠 ∈ 𝑆| 𝛿 𝑠, 𝑣 = Δ𝑣 + 𝑖}

• Let 𝑺𝒗[𝒊] to be the subset of 𝑺 that has distances to 𝒗 as 𝚫𝒗 + 𝒊

• The distance from cluster 𝑺 to vertex 𝒗 can be represented by
tuple <𝚫𝒗, 𝑺𝒗[𝟎, … , 𝐝]>

Our Parallel Cluster-BFS

35

How to propagate BFS information?

36

𝑢 𝑣

𝑠

• If 𝒖 and 𝒗 are neighbors, and there exists a path 𝒔 ↝ 𝒖 with length 𝒊-1

• then, there exists a path 𝒔 ↝ 𝒗 with length 𝒊

How to propagate BFS information?

37

𝑢 𝑣

• If 𝒖 and 𝒗 are neighbors, and there exists a path 𝒔 ↝ 𝒖 with length 𝒊-1

• then, there exists a path 𝒔 ↝ 𝒗 with length 𝒊

1
3

2

4

𝑆

0b00010b0001

How to propagate BFS information?

38

𝑢 𝑣

• If 𝒖 and 𝒗 are neighbors, and there exists a path 𝒔 ↝ 𝒖 with length 𝒊-1

• then, there exists a path 𝒔 ↝ 𝒗 with length 𝒊

1
3

2

4

𝑆

0b0001 0b0001

How to propagate BFS information?

39

In round 𝒊:

• 𝑺𝒔𝒆𝒆𝒏 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller than 𝒊

• 𝑺𝒏𝒆𝒙𝒕 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller or equal to 𝒊

𝑢 𝑣

1
3

2

4

𝑆

0b0001 0b0001

How to propagate BFS information?

40

𝑢 𝑣

1
3

2

4

𝑆

𝑺𝒔𝒆𝒆𝒏[𝒖] 𝑺𝒏𝒆𝒙𝒕[𝒗]
𝑶𝑹

In round 𝒊:

• 𝑺𝒔𝒆𝒆𝒏 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller than 𝒊

• 𝑺𝒏𝒆𝒙𝒕 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller or equal to 𝒊

Our Cluster-BFS

41

• Step 1: Initialization

• Step 2: Traversing
• Put the sources to the first frontier.

• While the frontier is not empty:
• Step 2.1: Vertex Mapping

• Update cluster-distance

• Step 2.2: Edge Traversing
• Propagate BFS information and put updated vertices to the next frontier

Our Cluster-BFS: 1. Initialization

42

1
3

2

5

4

6

9

7
8

• 𝚫𝒗 ← ∞
• 𝑺𝒔𝒆𝒆𝒏 𝒗 ← ∅
• For 𝒔 ∈ 𝑺, 𝑺𝒏𝒆𝒙𝒕 𝒔 ← {𝒔}; 𝒗 ∈ 𝑽\S, 𝑺𝒏𝒆𝒙𝒕 𝒗 ← ∅

1

2

3

4

5

6

7

8

9

𝓕𝟎= { }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

∞

∞

∞

∞

∞

∞

∞

∞

∞

Our Cluster-BFS: 1. Initialization

43

1
3

2

5

4

6

9

7
8

• 𝚫𝒗 ← ∞
• 𝑺𝒔𝒆𝒆𝒏 𝒗 ← ∅
• For 𝒔 ∈ 𝑺, 𝑺𝒏𝒆𝒙𝒕 𝒔 ← {𝒔}; 𝒗 ∈ 𝑽\S, 𝑺𝒏𝒆𝒙𝒕 𝒗 ← ∅

1

2

3

4

5

6

7

8

9

𝓕𝟎= { }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b0000 0b1000

0b0000 0b0100

0b0000 0b0010

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

∞

∞

∞

∞

∞

∞

∞

∞

∞

Our Cluster-BFS: 2.1 Vertices Mapping

44

1
3

2

5

4

6

9

7
8

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b0000 0b1000

0b0000 0b0100

0b0000 0b0010

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

1

2

3

4

5

6

7

8

9

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

∞

∞

∞

∞

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
 𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
 𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}

𝓕𝟎= { }1 2 3 4

Our Cluster-BFS: 2.1 Vertices Mapping

45

1
3

2

5

4

6

9

7
8

1

2

3

4

5

6

7

8

9

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b0000 0b1000

0b0000 0b0100

0b0000 0b0010

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0

0

0

0

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
 𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
 𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}

𝓕𝟎= { }1 2 3 4

Our Cluster-BFS: 2.1 Vertices Mapping

46

1
3

2

5

4

6

9

7
8

1

2

3

4

5

6

7

8

9

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b0000 0b1000

0b0000 0b0100

0b0000 0b0010

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
 𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
 𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}

𝓕𝟎= { }1 2 3 4

𝑺𝒏𝒆𝒙𝒕 𝒗 ∖ 𝑺𝒔𝒆𝒆𝒏[𝒗]: subset of 𝑺 whose distance to 𝒗 is 𝒊

Our Cluster-BFS: 2.1 Vertices Mapping

47

1
3

2

5

4

6

9

7
8

1

2

3

4

5

6

7

8

9

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1000

0b0100 0b0100

0b0010 0b0010

0b0001 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
 𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
 𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}

𝓕𝟎= { }1 2 3 4

Our Cluster-BFS: 2.2 Edge Traversing

48

1
3

2

5

4

6

9

7
8

1

2

3

4

5

6

7

8

9

𝓕𝟎= { }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1000

0b0100 0b0100

0b0010 0b0010

0b0001 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 ParallelForEach 𝑣 ∈ 𝑁 𝑢 do{
 if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢){
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

Our Cluster-BFS: 2.2 Edge Traversing

49

1
3

2

5

4

6

9

7
8

1

2

3

4

5

6

7

8

9

𝓕𝟎= { }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1000

0b0100 0b1100

0b0010 0b1010

0b0001 0b1001

0b0000 0b1000

0b0000 0b1000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 ParallelForEach 𝑣 ∈ 𝑁 𝑢 do{
 if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢){
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

Our Cluster-BFS: 2.2 Edge Traversing

53

1
3

2

5

4

6

9

7
8

1

2

3

4

5

6

7

8

9

𝓕𝟎= { }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1111

0b0100 0b1100

0b0010 0b1010

0b0001 0b1001

0b0000 0b1100

0b0000 0b1110

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 ParallelForEach 𝑣 ∈ 𝑁 𝑢 do{
 if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢){
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

𝓕𝟏= { }2 3 4 5 6

1 7

Our Cluster-BFS: Traversing Optimization

54

1
3

2

5

4

6

9

7
8

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 ParallelForEach 𝑣 ∈ 𝑁 𝑢 do{
 if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢){
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

Forward Traversing

ParallelForEach 𝑣 ∈ 𝑉 do{
 ParallelForEach u∈ 𝑁 𝑣 and 𝑢 ∈ ℱ𝑖 do{
 if 𝑆𝑛𝑒𝑥𝑡 𝑣 ← 𝑆𝑛𝑒𝑥𝑡 𝑣 ∪ 𝑆𝑠𝑒𝑒𝑛 𝑢 {
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

Backward Traversing

Our Cluster-BFS: Traversing Optimization

55

1
3

2

5

4

6

9

7
8

Forward Traversing

Backward Traversing

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
 ParallelForEach 𝑣 ∈ 𝑁 𝑢 do{
 if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢){
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

ParallelForEach 𝑣 ∈ 𝑉 do{
 ParallelForEach u∈ 𝑁 𝑣 and 𝑢 ∈ ℱ𝑖 do{
 if 𝑆𝑛𝑒𝑥𝑡 𝑣 ← 𝑆𝑛𝑒𝑥𝑡 𝑣 ∪ 𝑆𝑠𝑒𝑒𝑛 𝑢 {
 ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
 }
 }
}

Atomic Operation

Normal Operation

1 random read+write: 𝑆𝑛𝑒𝑥𝑡 𝑣

1 random read: 𝑆𝑠𝑒𝑒𝑛 𝑢

Applications: Approximate
Distance Oracles (ADO) for

Unweighted Graphs

56

ADO based on Landmark Labeling

58

• Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

• The basic idea is to select a subset 𝑯 of vertices as landmarks, and
compute the distance from landmark to all the vertices
• i.e. compute 𝜹 𝒉, 𝒗 , ∀ℎ ∈ 𝐻 and ∀𝑣 ∈ 𝑉

• Answering 𝒒𝒖𝒆𝒓𝒚(𝒖, 𝒗):
• minℎ∈𝐻 𝛿 ℎ, 𝑣 + 𝛿(ℎ, 𝑢)

𝒗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

0 1 1 1 1 1 2 2 2

1 1 1 2 2 0 2 3 1

2 3 3 1 3 2 0 1 1

1

6

7

𝑞𝑢𝑒𝑟𝑦 2,9 =

1
3

2

5

4

6

9

7
8

ADO based on Landmark Labeling

59

• Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

• The basic idea is to select a subset 𝑯 of vertices as landmarks, and
compute the distance from landmark to all the vertices
• i.e. compute 𝜹 𝒉, 𝒗 , ∀ℎ ∈ 𝐻 and ∀𝑣 ∈ 𝑉

• Answering 𝒒𝒖𝒆𝒓𝒚(𝒖, 𝒗):
• minℎ∈𝐻 𝛿 ℎ, 𝑣 + 𝛿(ℎ, 𝑢)

1
3

2

5

4

6

9

7
8

𝒗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

0 1 1 1 1 1 2 2 2

1 1 1 2 2 0 2 3 1

2 3 3 1 3 2 0 1 1

1

6

7

𝑞𝑢𝑒𝑟𝑦 2,9 =

3

2

4

min {3,2,4}

ADO based on Landmark Labeling

60

• Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

• The basic idea is to select a subset 𝑯 of vertices as landmarks, and
compute the distance from landmark to all the vertices
• i.e. compute 𝜹 𝒉, 𝒗 , ∀ℎ ∈ 𝐻 and ∀𝑣 ∈ 𝑉

• Answering 𝒒𝒖𝒆𝒓𝒚(𝒖, 𝒗):
• minℎ∈𝐻 𝛿 ℎ, 𝑣 + 𝛿(ℎ, 𝑢)

𝒗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

0 1 1 1 1 1 2 2 2

1 1 1 2 2 0 2 3 1

2 3 3 1 3 2 0 1 1

1

6

7

𝑞𝑢𝑒𝑟𝑦 2,9 =

3

2

4

min {3,2,4}

1
3

2

5

4

6

9

7
8

• The more landmarks selected, the more accurate the answers will be

Our ADO based on Cluster Landmark Labeling

61

• Landmark Labeling (LL) is one of the most widely-used and probably the
simplest ADO

• We select a cluster as a landmark instead of a vertex, and store the
cluster-distances to all vertices 𝒗 ∈ 𝑽

• Answering query(u,v):
• First, find minimum distance between u and v through a cluster

• Then, find the minimum value among all clusters

cluster 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

𝑆𝑎 Δ1, 𝑆1[1, . . 𝑑] Δ2, 𝑆2[1, . . 𝑑] Δ3, 𝑆3[1, . . 𝑑] … …

𝑆𝑏 Δ1, 𝑆1[1, . . 𝑑] Δ2, 𝑆2[1, . . 𝑑] Δ3, 𝑆3[1, . . 𝑑] … …

Experiments

62

Setup

63

• Machine:
• 96 cores

• 1.5 TB memory

• Graphs:
• 18 undirected graphs, which are either social or web graphs with low diameters

Microbenchmarks for Cluster-BFS

64

• Tested on 10 random clusters of size 𝒌=64 and 𝒅=2 and took the average

• Baselines:
• Plain: the standard sequential single source BFS

• AIY[AIY’12]: sequential cluster-BFS – only with bitwise-parallelism

• Ligra[ShunBlelloch’13]: parallel single-source BFS – only with thread-parallelism

21 19 20 23 21 21 24 21
32 28 20 22 24 23 22 21 20 25 22

4 4
6

18
30

4

62 90
50 39

103

12
27 31

11

158 188
80

27

102 94
185

448 497

171

1018 927 973 712
1119

453
821 688 462

856 813 945
500

1

4

16

64

256

1024

EP SLDT DBLP YT SK IN04 LJ HW FBUU FBKN OK INDO EU UK AR TW FT SD Mean

Speedup Over the Standard Sequential BFS

AIY Ligra Parallel C-BFS

Microbenchmarks for Cluster-BFS

65

• Tested on 10 random clusters with size 𝒌=64 and 𝒅=2 and took the average

• Baselines:
• Plain: the standard sequential single source BFS

• AIY[AIY’12]: sequential cluster-BFS – only with bitwise-parallelism

• Ligra[ShunBlelloch’13]: parallel single-source BFS – only with thread-parallelism

Microbenchmarks for Cluster-BFS

66

• Scalability

Approximate Landmark Labeling

67

• Comparison between cluster-based landmark labeling with Plain
• Control the index size to be same (1024 bytes/vertex), and compare preprocessing

time and accuracy

𝝐 =
𝒒𝒖𝒆𝒓𝒚 𝒖,𝒗

𝜹 𝒖,𝒗
− 𝟏,

smaller is better

𝑘 = 64 𝑘 = 8 𝑘 = 64 𝑘 = 8

Approximate Landmark Labeling

68

• The Performance of Different 𝒅 on Landmark Labeling
• Control the index size to be same, compare the preprocessing time and accuracy.

Summary

• Present a parallel implementation for cluster-BFS
• The first one that combines the bitwise-parallelism and thread-parallelism

• The implementation is highly efficient that both techniques still fully contribute to the
performance

• Applications: Distance Oracles
• By applying cluster-BFS, the landmark labeling-based ADO improves preprocessing

time and accuracy

• Our cluster-BFS is the first implementation support clusters with general 𝒅
• We tested the performance of cluster BFS-based ADO under different 𝑑

70

	幻灯片 1: Parallel Cluster-BFS and Applications to Shortest Paths
	幻灯片 2: Definition of Cluster-BFS
	幻灯片 3: Definition of Cluster-BFS
	幻灯片 4: Definition of Cluster-BFS
	幻灯片 5: Definition of Cluster-BFS
	幻灯片 6: Definition of Cluster-BFS
	幻灯片 7: Definition of Cluster-BFS
	幻灯片 8: Definition of Cluster-BFS
	幻灯片 9: Definition of Cluster-BFS
	幻灯片 10: Definition of Cluster-BFS
	幻灯片 11: Definition of Cluster-BFS
	幻灯片 12: Definition of Cluster-BFS
	幻灯片 13: Definition of Cluster-BFS
	幻灯片 14: Definition of Cluster-BFS
	幻灯片 15: Definition of Cluster-BFS
	幻灯片 16: Bitwise-parallelism shows efficiency in C-BFS
	幻灯片 17: Bitwise-parallelism is efficient in C-BFS
	幻灯片 18: Bitwise-parallelism is efficient in C-BFS
	幻灯片 19: Multi-threaded single-source BFS is highly optimized
	幻灯片 20: How do bit-parallelism and thread-level parallelism perform together?
	幻灯片 21: How do bit-parallelism and thread-level parallelism perform together?
	幻灯片 22: How do bit-parallelism and thread-level parallelism perform together?
	幻灯片 23: Representation: Cluster Distances
	幻灯片 24: The property of ‘clusters’
	幻灯片 25: The property of ‘clusters’
	幻灯片 26: The property of ‘clusters’
	幻灯片 28: The property of ‘clusters’
	幻灯片 29: The property of ‘clusters’
	幻灯片 30: The property of ‘clusters’
	幻灯片 31: The property of ‘clusters’
	幻灯片 32: The property of ‘clusters’
	幻灯片 33: The property of ‘clusters’
	幻灯片 34: Cluster Distance representations
	幻灯片 35: Our Parallel Cluster-BFS
	幻灯片 36: How to propagate BFS information?
	幻灯片 37: How to propagate BFS information?
	幻灯片 38: How to propagate BFS information?
	幻灯片 39: How to propagate BFS information?
	幻灯片 40: How to propagate BFS information?
	幻灯片 41: Our Cluster-BFS
	幻灯片 42: Our Cluster-BFS: 1. Initialization
	幻灯片 43: Our Cluster-BFS: 1. Initialization
	幻灯片 44: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 45: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 46: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 47: Our Cluster-BFS: 2.1 Vertices Mapping
	幻灯片 48: Our Cluster-BFS: 2.2 Edge Traversing
	幻灯片 49: Our Cluster-BFS: 2.2 Edge Traversing
	幻灯片 53: Our Cluster-BFS: 2.2 Edge Traversing
	幻灯片 54: Our Cluster-BFS: Traversing Optimization
	幻灯片 55: Our Cluster-BFS: Traversing Optimization
	幻灯片 56: Applications: Approximate Distance Oracles (ADO) for Unweighted Graphs
	幻灯片 58: ADO based on Landmark Labeling
	幻灯片 59: ADO based on Landmark Labeling
	幻灯片 60: ADO based on Landmark Labeling
	幻灯片 61: Our ADO based on Cluster Landmark Labeling
	幻灯片 62: Experiments
	幻灯片 63: Setup
	幻灯片 64: Microbenchmarks for Cluster-BFS
	幻灯片 65: Microbenchmarks for Cluster-BFS
	幻灯片 66: Microbenchmarks for Cluster-BFS
	幻灯片 67: Approximate Landmark Labeling
	幻灯片 68: Approximate Landmark Labeling
	幻灯片 70: Summary

