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Definition of Cluster-BFS

• Breadth-first search (BFS) is one of the most important graph 
processing subroutine
• Computing the unweighted distance

• Many applications may require running BFS from multiple sources
• Computing all pairs shortest paths (APSP)

• Constructing distance oracles for fast shortest distance query

• One special variant of multi-source BFS is Cluster-BFS (C-BFS)
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• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously
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Bitwise-parallelism
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• A cluster is a subset of vertices that are close to each other
• Cluster size is represented by 𝒌  -- how large

• Cluster diameter is represented by 𝒅 -- how close

• Cluster-BFS (C-BFS) conducts BFSs from a cluster simultaneously



Bitwise-parallelism shows efficiency in C-BFS

Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

Sequential C-BFS

[AIY’12]

Ligra BFS

[ShunBlelloch’13]
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Multi-threaded single-source BFS is highly 
optimized



How do bit-parallelism and thread-level 
parallelism perform together? 
Algorithms Sources Contributions Parallelism
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Algorithms Sources Contributions Parallelism

Chan’s BFS

[Chan’12]

A general cluster Theory Improvement

All pair shortest paths algorithm with 

𝑂(𝑚𝑛/log𝑛) work

Bitwise

Sequential C-BFS

[AIY’12]

A star-shaped cluster Efficient Implementation

Exact two-hop distance oracle

Bitwise

Ligra BFS

[ShunBlelloch’13]

A single vertex Highly-Optimized Building Block

Forward-backward optimization

Thread

Our algorithm A general cluster Theory Guarantee

Efficient Implementation

Highly-Optimized

Applications to Shortest Paths

Bitwise + Thread
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How do bit-parallelism and thread-level 
parallelism perform together? 



Representation:
Cluster Distances
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The property of ‘clusters’
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• Fact: On an unweighted graph 𝑮 = (𝑽, 𝑬), if the distance 
between vertex 𝒔𝟏 and 𝒔𝟐 is 𝒅, then for any vertex 𝒗 ∈ 𝑽, 
𝜹 𝒔𝟏, 𝒗 − 𝜹 𝒔𝟐, 𝒗 ≤ 𝒅.
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• Corollary: On an unweighted graph 𝑮 = (𝑽, 𝑬), given a set 𝑺 of 
vertices with diameter no more than 𝒅, for any vertex 𝒗 ∈ 𝑽,  

max
𝑠∈𝑆

 𝛿 𝑠, 𝑣 − min
𝑠∈𝑆

 𝛿 𝑠, 𝑣 ≤ 𝑑
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vertices with diameter no more than 𝒅, for any vertex 𝒗 ∈ 𝑽,  
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• Corollary: On an unweighted graph 𝑮 = (𝑽, 𝑬), given a set 𝑺 of 
vertices with diameter no more than 𝒅, for any vertex 𝒗 ∈ 𝑽,  

𝑣

max
𝑠∈𝑆

 𝛿 𝑠, 𝑣 − min
𝑠∈𝑆

 𝛿 𝑠, 𝑣 ≤ 𝑑

• Let 𝚫𝒗 = 𝐦𝐢𝐧
𝒔∈𝑺

 𝜹 𝒔, 𝒗 , the distance between 𝒗 and any  𝒔 ∈ 𝑺 is 

in range [𝚫𝐯, 𝚫𝐯 + 𝒅]
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𝑆

𝑣

𝑆𝑣 𝑖 = {𝑠 ∈ 𝑆| 𝛿 𝑠, 𝑣 = Δ𝑣 + 𝑖}

• Let 𝚫𝒗 = 𝐦𝐢𝐧
𝒔∈𝑺

 𝜹 𝒔, 𝒗 , the distance between 𝒗 and any  𝒔 ∈ 𝑺 is 

in range [𝚫𝐯, 𝚫𝐯 + 𝒅]

• Let 𝑺𝒗[𝒊] to be the subset of 𝑺 that has distances to 𝒗 as 𝚫𝒗 + 𝒊 

• The distance from cluster 𝑺 to vertex 𝒗 can be represented by 
tuple <𝚫𝒗, 𝑺𝒗[𝟎, … , 𝐝]>



Cluster Distance representations
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2 3 3 1 𝑘 words

𝑑 + 2 words 

1 word

1 word

𝑆𝑣 𝑖 = {𝑠 ∈ 𝑆| 𝛿 𝑠, 𝑣 = Δ𝑣 + 𝑖}

• Let 𝑺𝒗[𝒊] to be the subset of 𝑺 that has distances to 𝒗 as 𝚫𝒗 + 𝒊 

• The distance from cluster 𝑺 to vertex 𝒗 can be represented by 
tuple <𝚫𝒗, 𝑺𝒗[𝟎, … , 𝐝]>
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How to propagate BFS information?
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In round 𝒊:

• 𝑺𝒔𝒆𝒆𝒏 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller than 𝒊

• 𝑺𝒏𝒆𝒙𝒕 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller or equal to 𝒊

𝑢 𝑣
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𝑢 𝑣
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𝑺𝒔𝒆𝒆𝒏[𝒖] 𝑺𝒏𝒆𝒙𝒕[𝒗]
𝑶𝑹

In round 𝒊:

• 𝑺𝒔𝒆𝒆𝒏 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller than 𝒊

• 𝑺𝒏𝒆𝒙𝒕 𝒗 : subset of 𝑺 whose distances to 𝒗 is smaller or equal to 𝒊



Our Cluster-BFS
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• Step 1: Initialization

• Step 2: Traversing
• Put the sources to the first frontier.

• While the frontier is not empty:
• Step 2.1: Vertex Mapping

• Update cluster-distance

• Step 2.2: Edge Traversing
• Propagate BFS information and put updated vertices to the next frontier
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Our Cluster-BFS: 2.1 Vertices Mapping
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∞
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∞
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ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
  𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
  𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}  

𝓕𝟎= {                  }1 2 3 4
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  if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
  𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
  𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}  

𝓕𝟎= {                  }1 2 3 4
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𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b0000 0b1000

0b0000 0b0100

0b0000 0b0010

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
  𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
  𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}  

𝓕𝟎= {                  }1 2 3 4

𝑺𝒏𝒆𝒙𝒕 𝒗 ∖ 𝑺𝒔𝒆𝒆𝒏[𝒗]: subset of 𝑺 whose distance to 𝒗 is 𝒊
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𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1000

0b0100 0b0100

0b0010 0b0010

0b0001 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  if Δ𝑢 = ∞ then {Δ𝑢 = 𝑖}
  𝑆𝑣 𝑖 − Δ𝑢 ← 𝑆𝑛𝑒𝑥𝑡 𝑢 /𝑆𝑠𝑒𝑒𝑛[𝑢]
  𝑆𝑠𝑒𝑒𝑛[𝑢] ← 𝑆𝑠𝑒𝑒𝑛[𝑢] ∪ 𝑆𝑛𝑒𝑥𝑡[𝑢]
}  

𝓕𝟎= {                  }1 2 3 4
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𝓕𝟎= {                  }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1000

0b0100 0b0100

0b0010 0b0010

0b0001 0b0001

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  ParallelForEach 𝑣 ∈ 𝑁 𝑢  do{
    if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢 ){
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  
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𝓕𝟎= {                  }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1000

0b0100 0b1100

0b0010 0b1010

0b0001 0b1001

0b0000 0b1000

0b0000 0b1000

0b0000 0b0000

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  ParallelForEach 𝑣 ∈ 𝑁 𝑢  do{
    if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢 ){
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  
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𝓕𝟎= {                  }1 2 3 4

𝑺𝒔𝒆𝒆𝒏[𝒗] 𝑺𝒏𝒆𝒙𝒕[𝒗]

0b1000 0b1111

0b0100 0b1100

0b0010 0b1010

0b0001 0b1001

0b0000 0b1100

0b0000 0b1110

0b0000 0b0001

0b0000 0b0000

0b0000 0b0000

𝚫𝒗 𝑺𝒗[𝟎] 𝑺𝒗[𝟏] 𝑺𝒗[𝟐]

0 0b1000

0 0b0100

0 0b0010

0 0b0001

∞

∞

∞

∞

∞

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  ParallelForEach 𝑣 ∈ 𝑁 𝑢  do{
    if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢 ){
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  

𝓕𝟏= {                  }2 3 4 5 6

1 7
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ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  ParallelForEach 𝑣 ∈ 𝑁 𝑢  do{
    if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢 ){
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  

Forward Traversing

ParallelForEach 𝑣 ∈ 𝑉 do{
  ParallelForEach u∈ 𝑁 𝑣  and 𝑢 ∈ ℱ𝑖 do{
    if 𝑆𝑛𝑒𝑥𝑡 𝑣 ← 𝑆𝑛𝑒𝑥𝑡 𝑣 ∪ 𝑆𝑠𝑒𝑒𝑛 𝑢 {
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  

Backward Traversing
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Forward Traversing

Backward Traversing

ParallelForEach 𝑢 ∈ ℱ𝑖 do{
  ParallelForEach 𝑣 ∈ 𝑁 𝑢  do{
    if FetchAndOR(𝑆𝑛𝑒𝑥𝑡 𝑣 ,𝑆𝑠𝑒𝑒𝑛 𝑢 ){
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  

ParallelForEach 𝑣 ∈ 𝑉 do{
  ParallelForEach u∈ 𝑁 𝑣  and 𝑢 ∈ ℱ𝑖 do{
    if 𝑆𝑛𝑒𝑥𝑡 𝑣 ← 𝑆𝑛𝑒𝑥𝑡 𝑣 ∪ 𝑆𝑠𝑒𝑒𝑛 𝑢 {
      ℱ𝑖+1 = ℱ𝑖+1 ∪ {𝑣}
    }
  }
}  

Atomic Operation

Normal Operation

1 random read+write: 𝑆𝑛𝑒𝑥𝑡 𝑣

1 random read: 𝑆𝑠𝑒𝑒𝑛 𝑢



Applications: Approximate 
Distance Oracles (ADO) for 

Unweighted Graphs
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ADO based on Landmark Labeling

58

• Landmark Labeling (LL) is one of the most widely-used and probably the 
simplest ADO

• The basic idea is to select a subset 𝑯 of vertices as landmarks, and 
compute the distance from landmark to all the vertices
• i.e. compute 𝜹 𝒉, 𝒗 ,  ∀ℎ ∈ 𝐻 and ∀𝑣 ∈ 𝑉

• Answering 𝒒𝒖𝒆𝒓𝒚(𝒖, 𝒗):
• minℎ∈𝐻 𝛿 ℎ, 𝑣 + 𝛿(ℎ, 𝑢)

𝒗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

0 1 1 1 1 1 2 2 2

1 1 1 2 2 0 2 3 1

2 3 3 1 3 2 0 1 1

1

6

7

𝑞𝑢𝑒𝑟𝑦 2,9 =

1
3

2

5

4

6

9

7
8
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• Landmark Labeling (LL) is one of the most widely-used and probably the 
simplest ADO

• The basic idea is to select a subset 𝑯 of vertices as landmarks, and 
compute the distance from landmark to all the vertices
• i.e. compute 𝜹 𝒉, 𝒗 ,  ∀ℎ ∈ 𝐻 and ∀𝑣 ∈ 𝑉

• Answering 𝒒𝒖𝒆𝒓𝒚(𝒖, 𝒗):
• minℎ∈𝐻 𝛿 ℎ, 𝑣 + 𝛿(ℎ, 𝑢)
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𝒗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

0 1 1 1 1 1 2 2 2

1 1 1 2 2 0 2 3 1

2 3 3 1 3 2 0 1 1

1

6

7
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• Landmark Labeling (LL) is one of the most widely-used and probably the 
simplest ADO

• The basic idea is to select a subset 𝑯 of vertices as landmarks, and 
compute the distance from landmark to all the vertices
• i.e. compute 𝜹 𝒉, 𝒗 ,  ∀ℎ ∈ 𝐻 and ∀𝑣 ∈ 𝑉

• Answering 𝒒𝒖𝒆𝒓𝒚(𝒖, 𝒗):
• minℎ∈𝐻 𝛿 ℎ, 𝑣 + 𝛿(ℎ, 𝑢)

𝒗 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

0 1 1 1 1 1 2 2 2

1 1 1 2 2 0 2 3 1

2 3 3 1 3 2 0 1 1

1

6

7

𝑞𝑢𝑒𝑟𝑦 2,9 =

3

2

4

min {3,2,4}
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• The more landmarks selected, the more accurate the answers will be
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• Landmark Labeling (LL) is one of the most widely-used and probably the 
simplest ADO

• We select a cluster as a landmark instead of a vertex, and store the 
cluster-distances to all vertices 𝒗 ∈ 𝑽

• Answering query(u,v):
• First, find minimum distance between u and v through a cluster

• Then, find the minimum value among all clusters

cluster 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗

𝑆𝑎 Δ1, 𝑆1[1, . . 𝑑] Δ2, 𝑆2[1, . . 𝑑] Δ3, 𝑆3[1, . . 𝑑] … …

𝑆𝑏 Δ1, 𝑆1[1, . . 𝑑] Δ2, 𝑆2[1, . . 𝑑] Δ3, 𝑆3[1, . . 𝑑] … …



Experiments
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Setup

63

• Machine:
• 96 cores

• 1.5 TB memory

• Graphs:
• 18 undirected graphs, which are either social or web graphs with low diameters



Microbenchmarks for Cluster-BFS

64

• Tested on 10 random clusters of size 𝒌=64 and 𝒅=2 and took the average

• Baselines:
• Plain:  the standard sequential single source BFS

• AIY[AIY’12]: sequential cluster-BFS – only with bitwise-parallelism

• Ligra[ShunBlelloch’13]: parallel single-source BFS – only with thread-parallelism

21 19 20 23 21 21 24 21
32 28 20 22 24 23 22 21 20 25 22

4 4
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18
30

4

62 90
50 39

103
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27 31

11

158 188
80

27

102 94
185

448 497

171

1018 927 973 712
1119

453
821 688 462

856 813 945
500

1

4

16

64

256

1024

EP SLDT DBLP YT SK IN04 LJ HW FBUU FBKN OK INDO EU UK AR TW FT SD Mean

Speedup Over the Standard Sequential BFS

AIY Ligra Parallel C-BFS
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• Tested on 10 random clusters with size 𝒌=64 and 𝒅=2 and took the average

• Baselines:
• Plain:  the standard sequential single source BFS

• AIY[AIY’12]: sequential cluster-BFS – only with bitwise-parallelism

• Ligra[ShunBlelloch’13]: parallel single-source BFS – only with thread-parallelism



Microbenchmarks for Cluster-BFS

66

• Scalability



Approximate Landmark Labeling

67

• Comparison between cluster-based landmark labeling with Plain
• Control the index size to be same (1024 bytes/vertex), and compare preprocessing 

time and accuracy

𝝐 =
𝒒𝒖𝒆𝒓𝒚 𝒖,𝒗

𝜹 𝒖,𝒗
− 𝟏, 

smaller is better

𝑘 = 64 𝑘 = 8 𝑘 = 64 𝑘 = 8



Approximate Landmark Labeling

68

• The Performance of Different 𝒅 on Landmark Labeling
• Control the index size to be same, compare the preprocessing time and accuracy.



Summary

• Present a parallel implementation for cluster-BFS
• The first one that combines the bitwise-parallelism and thread-parallelism

• The implementation is highly efficient that both techniques still fully contribute to the 
performance

• Applications: Distance Oracles
• By applying cluster-BFS, the landmark labeling-based ADO improves preprocessing 

time and accuracy

• Our cluster-BFS is the first implementation support clusters with general 𝒅
• We tested the performance of cluster BFS-based ADO under different 𝑑

70
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