Many Sequential Iterative Algorithms Can
Be Parallel and (Nearly) Work-efficient

Zheqi Shen, Zijin Wan, Yan Gu, Yihan Sun
UC Riverside

| sequential lterative Algorithms

Process objects one by one in order

. object ?

for i =1 ton
process object 1

process process process process process process

Parallelizing Sequential lterative Algorithms

l[dentify the dependences among objects

object — dependence

for i =1 ton
process object 1

6.0 8000

I Parallelizing Sequential Iterative Algorithms

Obtain parallelism

first second third
round round round

I Many Seqguential lterative Algorithms Can Be Parallel

l@é@endend‘é“rg‘raph (DG‘DdI

G. Blelloch et al. (PPoPP 2012)

G. Blelloch et al. (SPAA 2012)

W. Hasenplaugh et al. (SPAA 2014)
X. Pan et al. (NIPS 2015) .

ldeal P | gmthm

M. Fischer and A. Noever. (SODA 2018)

- Parg’ I ee\{ert&wfo%ych as possible
- Pé‘?éﬁeﬁécﬂ vertex-eRbpyghen it is ready
G. Blelloch et al. (SPAA 2020)

|deal Parallel Algorithm

- Round-efficiency - Parallelize vertices as much as possible
- Work-efficiency - Process a vertex only when it is ready

| Efficiently Parallelizing Algorithms

Analysis I1s based on the binary-forking model (with TAS)

- Work: total number of operations
- Span: length of the longest execution path

Keep the algorithms efficient
- Round-efficiency
- Work-efficiency

| Efficiently Parallelizing Algorithms

Analysis I1s based on the binary-forking model (with TAS)

- Work: total number of operations
- Span: length of the longest execution path

Keep the algorithms efficient

- Round-efficiency: 0(D) span (D=longest path length of the given DG)
- Work-efficiency:

| Efficiently Parallelizing Algorithms

Analysis I1s based on the binary-forking model (with TAS)

- Work: total number of operations

- Span: length of the longest execution path

Keep the algorithms efficient

:Round-efficiency:

Work-efficiency:)

Near work-efficiency;

not equivalent to optimal span

Important for practical performance

Some algorithms could not be parallelized efficiently

| Example: Longest Increasing Subseguence (LIS)

Glven a sequence Sy ... Sp
The LIS problem finds the longest subsequence s* of s
Elements in s™ are strictly increasing

0000000600

| Example: Longest Increasing Subseguence (LIS)

Q8

length of LIS ending with dpli] = [le?*?;g]dp[/] +1
)] l

the i-th object

Sequentially we can compute this in 0(nlogn) cost

| Example: Longest Increasing Subseguence (LIS)

Existing parallel algorithms are not nearly work-eftficient or round efficient

- Galil et al.(Parallel Distrib 1994), Krusche, et al.(PPAM 2009), Nakashima et al. (ISPDC
2002), Semé, Thierry, et al. (ICCSA 2006), Thierry, et. al. (SPAA 2001) have Q(n'>) work

- Alam and Rahman’s algorithm (IPL 2013) has ©(n) span

- Krusche and Tiskin's algorithm (SPAA 2010) has 0 (nlog? n) work and 0(n?/2) span

| Example: Longest Increasing Subseguence (LIS)

Q8

General approaches / frameworks
- Do not directly give efficient solutions to LIS

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

%

In a high level:
- Access all unprocessed objects each round

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

%

In a high level:
- Access all unprocessed objects each round
- Check their readiness

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

In a high level:

- Access all unprocessed objects each round
- Check their readiness

- Process the ready objects

N,

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

In a high level:

- Access all unprocessed objects each round
- Check their readiness

- Process the ready objects

AN

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

In a high level:

- Access all unprocessed objects each round
- Check their readiness

- Process the ready objects

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

In a high level:

- Access all unprocessed objects each round
- Check their readiness

- Process the ready objects

| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

In a high level:

- Access all unprocessed objects each round
- Check their readiness

- Process the ready objects

- Work-efficient only when the work
decreases geometrically in every round

- O(round - n) work for LIS
- 0(n?) worst-case

| Activation-based Approaches

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al. (SPAA 2020)

- Activate some successors based on the
edges In the DG

| Activation-based Approaches

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al. (SPAA 2020)

- Activate some successors based on the

edges In the DG

- Process the ready ones

| Activation-based Approaches

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al. (SPAA 2020)

- Activate some successors based on the
edges In the DG

n - Process the ready ones

- Go through all the edges
n - Take ®(m) work for LIS (m =#edges in the DG)
- m can be up to 8(n?)

Cost of single # candidates In

readiness check next round
Deterministic
recervations Dﬁ' can be fast all the rest
Activation-based O(deg) [[ﬁ only successors

Cost of single # candidates In
readiness check next round

[[6 can be fast

[[6 only successors

| This Work

Phase-parallel framework to analyze dependences

- Core concept:

- Vertex-centric manner: avoid checking all the edges

Two general technigues to design algorithms in this framework
- Type 1 (more interesting problem in our paper)
- Type 2 (LIS problem is here)

I Phase-parallel Framework

A general technique to parallelize the iterative algorithms

Formally define rank from the independence system (S, F)
- Feasible set: F(x) ={E € F:E S x',x € E}

- Maximum feasible set: MFS(x) = arg Erenfa(x) |E|
X

- Rank: rank(x) = |[MFS(x)|

! Apply to LIS

F(x) ={E € F:E S x',x € E}

MFS(x) = arg Eren}gié) |E|

rank(x) = |[MFS(x)|

! Apply to LIS

- F(x) ={E € F:E S x',x € E}

- MFS(x) = arg Erenjgé) |E|

- rank(x) = |MFS(x)|

! Apply to LIS

a\o Given an object x

! Apply to LIS

e F(ED)

Given an object x

- F(x)

Increasing subsequence
ending with object x

! Apply to LIS

= MFS([E))

Given an object x

- F(x)

Increasing subsequence
ending with object x

LIS ending with object x

! Apply to LIS

rank(a

)=3

Given an object x

- F(x)
- MFS(x)

- rank(x)

Increasing subsequence
ending with object x

LIS ending with object x

the length of LIS

! Apply to LIS

Given an object x

Increasing subsequence
- T(X) ending with object x

- MFS(X)| s ending with object x

- rank(x) the length of LIS

\ The earliest “phase”

when an object Is ready

With certain conditions, the
rank of an object Is its depth in DG

rank=1 rank=2 rank=3

| Processes objects in the order of ranks

rank=1 rank=2 rank=3

| Processes objects in the order of ranks

Challenge
Find the ready objects in each round
Avolid visiting all edges

Solution
“Vertex-centric” approach

I Core idea: select a “pivot” for every object

I Core idea: select a “pivot” for every object

825

80

Pivot: an unfinished predecessor
selected at uniformly random

It the pivot of an object hasn't finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes

I Core idea: select a “pivot” for every object

Pivot: an unfinished predecessor
selected uniformly at random

It the pivot of an object haven't finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes

I Core idea: select a “pivot” for every object

%kes up

=

Pivot: an unfinished predecessor
selected uniformly at random

It the pivot of an object haven't finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes

| Wake-up and re-pivoting

It the object waked up Is not ready

- Update pivot to another unprocessed objects

n — - Sleep until being waked up the next time

| Wake-up and re-pivoting

B Assign a pivot to each object

Choose another pivot If not ready when being
waked up

Save work as only a few edges are evaluated

It choosing pivots at uniformly random,
#evaluated edges is O(n log n) w.h.p.

| Apply to the LIS algorithm

B F = {ready at the beginning}
while F# 0@
> ° I
process F

Swoken = {objects woken by F}
Sready = {u € Syoken, Uisready}

H update pivots in Syoken — Sready

F = S1ready

| Apply to the LIS algorithm

B F = {ready at the beginning}
while F# 0@
-8
process F

Swoken = {objects woken by F}
Sready = {u € Syoken, Uisready}

H update pivots in Syoken — Sready

F = S1ready

| Apply to the LIS algorithm

F = {ready at the beginning}

while F# 0@
{
process F
Swoken = f{objects woken by F}

Sready = {u € Swoken, Uisready}

update pivots in Syoken — Sready

F = Sready

| Apply to the LIS algorithm

= {ready at the beginning}

while F# 0
{

-3

process F

Woken = {objects woken by F}
ready = {u € Syoken, Uisready}

update pivots in Syoken — Sready
F = S1ready

| Apply to the LIS algorithm

F = {ready at the beginning}

O while F#0
—7 {

process F

Woken = {objects woken by F}
ready = {u € Syoken, Uisready}

update pivots in Syoken — Sready
F = S1ready

| Apply to the LIS algorithm

F = {ready at the beginning}

n while F# 0@
{

process F

Woken = {objects woken by F}
ready = {u € Syoken, Uisready}

update pivots in Syoken — Sready
F = Sready

| Apply to the LIS algorithm

F = {ready at the beginning}

while F# 0@
{
process F
Swoken = {objects woken by F}

Sready = {u € Swoken, Uisready}

update pivots in Syoken — Sready

= Sready

| Apply to the LIS algorithm

F = {ready at the beginning}

n while F# 0@
{

process F
n Swoken = {objects woken by F}
Sready = {u € Syoken, Uisready}

update pivots in Syoken — Sready
F = Sready

| Apply to the LIS algorithm

F = {ready at the beginning}
while F# 0@
{

DP value computation process F

Swoken = {objects woken by F}

Readiness check Sready = {U € Syoken, U isready}
Pivot reselection update pivots in Syoken — Sready
F = Sready

| Vertex-centric Approach

Si

0000000600

dplil] = _max dp[j] +1

1<l,S;<S;j

| Vertex-centric Approach

Si

| Vertex-centric Approach

dpli] = max dpl[j] +1

J<i, Sj<Sj

| Vertex-centric Approach

dpli] = max dp[j] +1

J<i, Sj<Sj

| Vertex-centric Approach

dpli] = max dp[j] +1

J<i, Sj<Sj

| Vertex-centric Approach

dpli] = max dpl[j] +1

J<i, Sj<Sj

Readiness check
DP value computation

PIvot re-selection

Above operations can be done by
a 2D range tree in 0(log®n)

I [Sun, et al. (PPoPP 2018)]

I Complexity of our parallel LIS algorithm

input n

wake-ups O(nlogn) total wake-ups w.h.p.

per wake-up

- Compute DP values 0(log? n) by range queries
- Check readiness

- Re-select pivots

I Parallel LIS Algorithm

Using our phase-parallel framework and vertex-centric methods,
we parallelize LIS algorithm with

Nearly work-efficient: 0(nlog>n) work w.h.p.
Round-efficient: O(rlog? n) span

n = input size
r = the LIS length of the input

| Key Technigues

Pivots
Wake-up strategy
Vertex-centric readiness check

More applications in Type-2 approach
- Other range-search-based greedy or dynamic programming
- Maximal independent set (MIS) using wake-up strategy only

Cost of single # candidates In
readiness check next round

Polylog A few successors
Type-2 approach [@ (by range queries) [&’(by wake-up strategy)

Cost of single
readiness check

candidates In
next round

Type-1 approach

Trivial

Logarithmic
(by 1-D range queries)

Type-2 approach

Polylog
(by range queries)

A few successors
(by wake-up strategy)

| Improved Bounds

*with high probability

Work Span
LIS O(nlog3n) * O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection 0(nlogn) 0(logn)”

(unweighted)

| Improved Bounds

*with high probability

Work Span
LIS O(nlog3n)* O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection 0(nlogn) 0(logn)”

(unweighted)

| Improved Bounds

*with high probability

Work Span
LIS O(nlog3n)* O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
ol gizel) O(nlogn) O(r logn)
Activity Selection 0(nlogn) 0(logn)”

(unweighted)

| Improved Bounds

*with high probability

Work Span
LIS O(nlog3n)* O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection D Tem) 0(logn)*

(unweighted)

I ‘ m p rOVGd BO U ﬂ dS *with high probability

Work Span
LIS O(nlog3n)* O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection .
(unweighted) O(nlogn) O(logn)

Huffman tree, graph coloring, SSSP, unlimited knapsack, and more In the paper

| EXperiment Setup

Hardware
- 96 CPU cores (192 hyper-threads)
- 1.5 TIB of main memory

Parallelized Algorithms
- Huffman Tree

- Activity selection
- LIS

Work-efficient algorithms generally perform well

Time (ms.)

uffman Tree

—@— Parallel
—a&— Classic seq

10° 10’
Input Size

108

21.26x

Our algorithm i1s work-efficient
O(r) span for rank r (tree height)

The rank of the test data Is low

The algorithm performs well
- 21.26x speedup to the sequential

| Activity Selection

n = 10°
1200- —=— Parallel (Type-1) Implement with both Type-1 and -2
—&— Parallel (Type-2)) VR 1

A1ooo- »— Classic seq Both ére~work efficient: O(n log n)
S 800 - Spanis O(r) forrank r
j:nj 600-
-E 400- The algorithm performs well on a

200- wide range of rank values

O- S

102 103 10% 10° 10°
Output size
(Rank) ~ 400k

| Longest Increasing Subsequence

Nearly work-efficient: 0(n log> n)

2
—e— Parallel - O(log“ n) overhead
100] —*— Classic seq
A Run fast on small ranks
% - Overhead in work still limits its performance
= for large ranks
=
10] .] - Open problem:
1 10 100 1000 10000 - -
t)
Output size O(nlogn) work with good parallelism’

(Rank)

I summary

Motivation
- Many existing sequential iterative algorithms can be highly parallel
- Parallelize these algorithms efficiently

New Techniques: general to many algorithms
- Phase-parallel framework
- Type-1 and Type-2 approaches

New algorithms (many improving best known bounds)
- LIS, activity selection, MIS, Huffman tree, SSSP, -

I Future Work

Can LIS problem be solved in O(n log n) with good parallelism?

Can our techniques apply to other problems?

Thank you

I summary

Motivation
- Many existing sequential iterative algorithms can be highly parallel
- Parallelize these algorithms efficiently

New Techniques: general to many algorithms
- Phase-parallel framework
- Type-1 and Type-2 approaches

New algorithms (many improving best known bounds)
- LIS, activity selection, MIS, Huffman tree, SSSP, -

