
Many Sequential Iterative Algorithms Can
Be Parallel and (Nearly) Work-efficient
Zheqi Shen, Zijin Wan, Yan Gu, Yihan Sun

UC Riverside

process process process processprocess

Sequential Iterative Algorithms

Process objects one by one in order

1 2 3 4 5 6
for i = 1 to n

process object i

object dependence

process

Parallelizing Sequential Iterative Algorithms

Identify the dependences among objects

1 2 3 4 5 6
for i = 1 to n

process object i

object dependence

first
round

second
round

third
round

Parallelizing Sequential Iterative Algorithms

Obtain parallelism

1 2

3

4 5

6

first
round

second
round

third
round

Many Sequential Iterative Algorithms Can Be Parallel

G. Blelloch et al. (PPoPP 2012)

G. Blelloch et al. (SPAA 2012)

W. Hasenplaugh et al. (SPAA 2014)

X. Pan et al. (NIPS 2015)

J. Shun et al. (SODA 2015)

M. Fischer and A. Noever. (SODA 2018)

G. Blelloch et al. (JACM 2020)

G. Blelloch et al. (SPAA 2020)

G. Blelloch et al. (SPAA 2020)

…

1 2

3

4 5

6

dependence graph (DG)

Ideal Parallel Algorithm

- Parallelize vertices as much as possible

- Process a vertex only when it is ready

Ideal Parallel Algorithm

- Parallelize vertices as much as possible

- Process a vertex only when it is ready

-

-

- Round-efficiency

- Work-efficiency

Analysis is based on the binary-forking model (with TAS)

- Work: total number of operations

- Span: length of the longest execution path

Keep the algorithms efficient

- Round-efficiency

- Work-efficiency

Efficiently Parallelizing Algorithms

Analysis is based on the binary-forking model (with TAS)

- Work: total number of operations

- Span: length of the longest execution path

Keep the algorithms efficient

- Round-efficiency: ෨𝑂(𝐷) span (𝐷=longest path length of the given DG)

- Work-efficiency:

Efficiently Parallelizing Algorithms

Analysis is based on the binary-forking model (with TAS)

- Work: total number of operations

- Span: length of the longest execution path

Keep the algorithms efficient

- Round-efficiency: ෨𝑂(𝐷) span (𝐷=longest path length of the given DG)

- Work-efficiency: 𝑂(𝑊) work (𝑊=the cost of the sequential algorithm)

- Near work-efficiency: ෨𝑂(𝑊) work

Some algorithms could not be parallelized efficiently

Efficiently Parallelizing Algorithms

important for practical performance

not equivalent to optimal span

Example: Longest Increasing Subsequence (LIS)

Given a sequence 𝑠1…𝑠𝑛
The LIS problem finds the longest subsequence 𝑠∗ of 𝑠

Elements in 𝑠∗ are strictly increasing

8 4 97 3 1 5 2 6

Example: Longest Increasing Subsequence (LIS)

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8 4 97 3 1 5 2 6

Sequentially we can compute this in 𝑶(𝒏 𝐥𝐨𝐠𝒏) cost

length of LIS ending with
the 𝑖-th object

Example: Longest Increasing Subsequence (LIS)

8 4 97 3 1 5 2 6

Existing parallel algorithms are not nearly work-efficient or round efficient
- Galil et al.(Parallel Distrib 1994), Krusche, et al.(PPAM 2009), Nakashima et al. (ISPDC

2002), Semé, Thierry, et al. (ICCSA 2006), Thierry, et. al. (SPAA 2001) have Ω(𝑛1.5) work
- Alam and Rahman’s algorithm (IPL 2013) has Θ 𝑛 span
- Krusche and Tiskin’s algorithm (SPAA 2010) has ෨𝑂 𝑛 log2 𝑛 work and ෨𝑂(𝑛2/3) span

Example: Longest Increasing Subsequence (LIS)

8 4 97 3 1 5 2 6

General approaches / frameworks
- Do not directly give efficient solutions to LIS

Deterministic Reservations

- Access all unprocessed objects each round
8

4 9

7

3

1

5

2

6

??

?

?

?

?
?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness
8

4 9

7

3

1

5

2

6

??

?

?

?

?
?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?
?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?

?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

- Work-efficient only when the work
decreases geometrically in every round

- Θ(round ⋅ 𝑛) work for LIS

- 𝑂 𝑛2 worst-case

8

4 9

7

3

1

5

2

6

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

Activation-based Approaches

- Activate some successors based on the
edges in the DG

8

4 9

7

3

1

5

2

6

8

4

3

1

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al..(SPAA 2020)

Activation-based Approaches

- Activate some successors based on the
edges in the DG

- Process the ready ones

8

4 9

7

3

1

5

2

6

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al..(SPAA 2020)

Activation-based Approaches

- Activate some successors based on the
edges in the DG

- Process the ready ones

- Go through all the edges

- Take Θ(𝑚) work for LIS (𝑚 =#edges in the DG)

- 𝑚 can be up to Θ(𝑛2)

8

4 9

7

3

1

5

2

6

9

6

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M.(Fischer and A.(Noever (SODA 2018) , generalized by Blelloch et al.((SPAA 2020)

Deterministic
reservations

Activation-based

Cost of single
readiness check

can be fast

Θ(deg)

candidates in
next round

all the rest

only successors

Cost of single
readiness check

can be fast

Θ(deg)

candidates in
next round

all the rest

only successors

Deterministic
reservations

Activation-based

This Work

Phase-parallel framework to analyze dependences

- Core concept: rank

- Vertex-centric manner: avoid checking all the edges

Two general techniques to design algorithms in this framework

- Type 1 (more interesting problem in our paper)

- Type 2 (LIS problem is here)

Phase-parallel Framework

A general technique to parallelize the iterative algorithms

Formally define rank from the independence system (𝑆, ℱ)

- Feasible set: ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- Maximum feasible set: MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- Rank: rank 𝑥 = |MFS(𝑥)|

Apply to LIS

- Feasible set: ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- Maximum feasible set: MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- Rank: rank 𝑥 = |MFS(𝑥)|

Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

8

4 9

7

3

1

5

2

6

Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

8

4 9

7

3

1

5

2

6

Given an object 𝑥

Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

8

4 9

7

3

1

5

2

6

∈ ℱ()

increasing subsequence
ending with object 𝑥9

Given an object 𝑥

Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

8

4 9

7

3

1

5

2

6

= MFS()

increasing subsequence
ending with object 𝑥

LIS ending with object 𝑥

9

Given an object 𝑥

Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

8

4 9

7

3

1

5

2

6

rank()=3

increasing subsequence
ending with object 𝑥

LIS ending with object 𝑥

the length of LIS

9

Given an object 𝑥

Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

With certain conditions, the
rank of an object is its depth in DG

rank=1 rank=2 rank=3

8

4 9

7

3

1

5

2

6
the length of LIS

increasing subsequence
ending with object 𝑥

LIS ending with object 𝑥

Given an object 𝑥

The earliest “phase”
when an object is ready

Processes objects in the order of ranks

rank=1 rank=2 rank=3

8

4 9

7

3

1

5

2

6

Processes objects in the order of ranks

Challenge

Find the ready objects in each round

Avoid visiting all edges

Solution

“Vertex-centric” approach

8

4 9

7

3

1

5

2

6

Core idea: select a “pivot” for every object

8

4 9

7

3

1

5

2

6

Core idea: select a “pivot” for every object

8

4 9

7

3

1

5

2

6

Pivot: an unfinished predecessor
selected at uniformly random

If the pivot of an object hasn’t finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes

Core idea: select a “pivot” for every object

8

4 9

7

3

1

5

2

6

Pivot: an unfinished predecessor
selected uniformly at random

If the pivot of an object haven’t finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes

Core idea: select a “pivot” for every object

8

4 9

7

3

1

5

2

6

5

6?
wakes up

Pivot: an unfinished predecessor
selected uniformly at random

If the pivot of an object haven’t finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes

Wake-up and re-pivoting

If the object waked up is not ready

- Update pivot to another unprocessed objects

- Sleep until being waked up the next time

8

4 9

7

3

1

5

2

6

4 9?

Wake-up and re-pivoting

Assign a pivot to each object

Choose another pivot if not ready when being
waked up

Save work as only a few edges are evaluated

If choosing pivots at uniformly random,
#evaluated edges is 𝑶(𝒏 𝐥𝐨𝐠 𝒏) w.h.p.

8

4 9

7

3

1

5

2

6

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

?
?

?

?

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

x
✓

✓

✓

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

f9f

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

8

4 9

7

3

1

5

2

6

Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

DP value computation

Readiness check

Pivot reselection

Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8 4 97 3 1 5 2 6

𝑠𝑖

𝑖

Vertex-centric Approach

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖

Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖

Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖

Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖

Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

Readiness check

DP value computation

Pivot re-selection

Above operations can be done by
a 2D range tree in 𝑂 log2𝑛

[Sun, et al. (PPoPP 2018)]

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖

Complexity of our parallel LIS algorithm

𝑶(𝒏 𝐥𝐨𝐠𝒏) total wake-ups w.h.p.

𝑶(𝐥𝐨𝐠𝟐 𝒏) by range queries

𝒏input

wake-ups

per wake-up

- Compute DP values

- Check readiness

- Re-select pivots

Parallel LIS Algorithm

Using our phase-parallel framework and vertex-centric methods,

we parallelize LIS algorithm with

Nearly work-efficient: 𝑂(𝑛 log3 𝑛) work w.h.p.

Round-efficient: 𝑂(𝑟 log2 𝑛) span

𝑛 = input size

𝑟 = the LIS length of the input

Key Techniques

Pivots

Wake-up strategy

Vertex-centric readiness check

More applications in Type-2 approach

- Other range-search-based greedy or dynamic programming

- Maximal independent set (MIS) using wake-up strategy only

Type-2 approach

Cost of single
readiness check

Polylog
((by range queries))

candidates in
next round

A few successors
((by wake-up strategy))

Type-1fapproach

Type-2 approach

Cost of single
readiness check

Trivial

Polylog
((by range queries))

candidates in
next round

Logarithmic
(byf1-D range queries)

A few successors
((by wake-up strategy))

Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability

Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability

Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability

Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability

Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability

Huffman tree, graph coloring, SSSP, unlimited knapsack, and more in the paper

Experiment Setup

Hardware
- 96 CPU cores (192 hyper-threads)

- 1.5 TiB of main memory

Parallelized Algorithms
- Huffman Tree

- Activity selection

- LIS

- …

Work-efficient algorithms generally perform well

Huffman Tree

105 106 107 108 109
0.1

1

10

100

1000

T
im

e
 (

m
s
.)

Input Size

 Parallel

 Classic seq

Our algorithm is work-efficient
෨𝑂(𝑟) span for rank 𝑟 (tree height)

The rank of the test data is low

The algorithm performs well

- 21.26x speedup to the sequential

21.26x

Activity Selection

102 103 104 105 106
0

200

400

600

800

1000

1200

T
im

e
 (

s
e

c
.)

Output size

 Parallel (Type-1)

 Parallel (Type-2)

 Classic seq

𝑛 = 109

Implement with both Type-1 and -2

- Both are work-efficient: O(𝑛 log 𝑛)

- Span is ෨𝑂(𝑟) for rank 𝑟

The algorithm performs well on a
wide range of rank values

≈400k(Rank)

Longest Increasing Subsequence

1 10 100 1000 10000
10

100

T
im

e
 (

s
e

c
.)

Output size

 Parallel

 Classic seq

LIS algorithm with 𝑂(log2𝑛) parallelizing overheadNearly work-efficient: 𝑂(𝑛 log3 𝑛)

- 𝑂(log2 𝑛) overhead

Run fast on small ranks

- Overhead in work still limits its performance
for large ranks

Open problem:

𝑂(𝑛 log 𝑛) work with good parallelism?

(Rank)

Summary

Motivation

- Many existing sequential iterative algorithms can be highly parallel

- Parallelize these algorithms efficiently

New Techniques: general to many algorithms

- Phase-parallel framework

- Type-1 and Type-2 approaches

New algorithms (many improving best known bounds)

- LIS, activity selection, MIS, Huffman tree, SSSP, …

Future Work

Can LIS problem be solved in 𝑂(𝑛 log 𝑛) with good parallelism?

Can our techniques apply to other problems?

Thank you

Summary

Motivation

- Many existing sequential iterative algorithms can be highly parallel

- Parallelize these algorithms efficiently

New Techniques: general to many algorithms

- Phase-parallel framework

- Type-1 and Type-2 approaches

New algorithms (many improving best known bounds)

- LIS, activity selection, MIS, Huffman tree, SSSP, …

