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| sequential lterative Algorithms

Process objects one by one in order

. object ?

for i =1 ton
process object 1

process process process process process process



Parallelizing Sequential lterative Algorithms

l[dentify the dependences among objects

object — dependence

for i =1 ton
process object 1
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I Parallelizing Sequential Iterative Algorithms

Obtain parallelism

first second third
round round round



I Many Seqguential lterative Algorithms Can Be Parallel
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W. Hasenplaugh et al. (SPAA 2014)
X. Pan et al. (NIPS 2015) .
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M. Fischer and A. Noever. (SODA 2018)

- Parg’ I ee\{ert&wfo%ych as possible
- Pé‘?éﬁeﬁécﬂ vertex-eRbpyghen it is ready
G. Blelloch et al. (SPAA 2020)



|deal Parallel Algorithm

- Round-efficiency - Parallelize vertices as much as possible
- Work-efficiency - Process a vertex only when it is ready



| Efficiently Parallelizing Algorithms

Analysis I1s based on the binary-forking model (with TAS)

- Work: total number of operations
- Span: length of the longest execution path

Keep the algorithms efficient
- Round-efficiency
- Work-efficiency
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| Efficiently Parallelizing Algorithms

Analysis I1s based on the binary-forking model (with TAS)

- Work: total number of operations

- Span: length of the longest execution path

Keep the algorithms efficient

:Round-efficiency:

Work-efficiency: )

Near work-efficiency;

not equivalent to optimal span

Important for practical performance

Some algorithms could not be parallelized efficiently



| Example: Longest Increasing Subseguence (LIS)

Glven a sequence Sy ... Sp
The LIS problem finds the longest subsequence s* of s
Elements in s™ are strictly increasing

0000000600




| Example: Longest Increasing Subseguence (LIS)

Q8

length of LIS ending with dpli] = [le?*?;g]dp[/] +1
) ] l

the i-th object

Sequentially we can compute this in 0(nlogn) cost



| Example: Longest Increasing Subseguence (LIS)

Existing parallel algorithms are not nearly work-eftficient or round efficient

- Galil et al.(Parallel Distrib 1994), Krusche, et al.(PPAM 2009), Nakashima et al. (ISPDC
2002), Semé, Thierry, et al. (ICCSA 2006), Thierry, et. al. (SPAA 2001) have Q(n'>) work

- Alam and Rahman’s algorithm (IPL 2013) has ©(n) span

- Krusche and Tiskin's algorithm (SPAA 2010) has 0 (nlog? n) work and 0(n?/2) span



| Example: Longest Increasing Subseguence (LIS)

Q8

General approaches / frameworks
- Do not directly give efficient solutions to LIS




| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)
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| Deterministic Reservations

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)

In a high level:

- Access all unprocessed objects each round
- Check their readiness

- Process the ready objects

- Work-efficient only when the work
decreases geometrically in every round

- O(round - n) work for LIS
- 0(n?) worst-case



| Activation-based Approaches

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al. (SPAA 2020)

- Activate some successors based on the
edges In the DG
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| Activation-based Approaches

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al. (SPAA 2020)

- Activate some successors based on the
edges In the DG

n - Process the ready ones

- Go through all the edges
n - Take ®(m) work for LIS (m =#edges in the DG)
- m can be up to 8(n?)




Cost of single # candidates In

readiness check next round
Deterministic
recervations Dﬁ' can be fast all the rest
Activation-based O(deg) [[ﬁ only successors



Cost of single # candidates In
readiness check next round

[[6 can be fast

[[6 only successors



| This Work

Phase-parallel framework to analyze dependences

- Core concept:

- Vertex-centric manner: avoid checking all the edges

Two general technigues to design algorithms in this framework
- Type 1 (more interesting problem in our paper)
- Type 2 (LIS problem is here)



I Phase-parallel Framework

A general technique to parallelize the iterative algorithms

Formally define rank from the independence system (S, F)
- Feasible set: F(x) ={E € F:E S x',x € E}

- Maximum feasible set:  MFS(x) = arg Erenfa(x) |E|
X

- Rank: rank(x) = |[MFS(x)|



! Apply to LIS

F(x) ={E € F:E S x',x € E}

MFS(x) = arg Eren}gié) |E|

rank(x) = |[MFS(x)|



! Apply to LIS

- F(x) ={E € F:E S x',x € E}

- MFS(x) = arg Erenjgé) |E|

- rank(x) = |MFS(x)|
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a\o Given an object x
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Given an object x
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! Apply to LIS

= MFS([E))

Given an object x

- F(x)

Increasing subsequence
ending with object x

LIS ending with object x




! Apply to LIS

rank(a

)=3

Given an object x

- F(x)
- MFS(x)

- rank(x)

Increasing subsequence
ending with object x

LIS ending with object x

the length of LIS




! Apply to LIS

Given an object x

Increasing subsequence
- T(X) ending with object x

- MFS(X)| s ending with object x

- rank(x) the length of LIS

\ The earliest “phase”

when an object Is ready

With certain conditions, the
rank of an object Is its depth in DG

rank=1 rank=2 rank=3



| Processes objects in the order of ranks

rank=1 rank=2 rank=3



| Processes objects in the order of ranks

Challenge
Find the ready objects in each round
Avolid visiting all edges

Solution
“Vertex-centric” approach




I Core idea: select a “pivot” for every object
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Pivot: an unfinished predecessor
selected at uniformly random

It the pivot of an object hasn't finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes
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I Core idea: select a “pivot” for every object

%kes up

=

Pivot: an unfinished predecessor
selected uniformly at random

It the pivot of an object haven't finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes



| Wake-up and re-pivoting

It the object waked up Is not ready

- Update pivot to another unprocessed objects

n — - Sleep until being waked up the next time




| Wake-up and re-pivoting

B Assign a pivot to each object

Choose another pivot If not ready when being
waked up

Save work as only a few edges are evaluated

It choosing pivots at uniformly random,
#evaluated edges is O(n log n) w.h.p.




| Apply to the LIS algorithm

B F = {ready at the beginning}
while F# 0@
> ° I
process F

Swoken = {objects woken by F}
Sready = {u € Syoken, Uisready}

H update pivots in Syoken — Sready

F = S1ready
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B F = {ready at the beginning}
while F# 0@
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| Apply to the LIS algorithm

F = {ready at the beginning}

while F# 0@
{
process F
Swoken = f{objects woken by F}

Sready = {u € Swoken, Uisready}

update pivots in Syoken — Sready

F = Sready



| Apply to the LIS algorithm

= {ready at the beginning}

while F# 0
{

-3

process F

Woken = {objects woken by F}
ready = {u € Syoken, Uisready}

update pivots in Syoken — Sready
F = S1ready
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| Apply to the LIS algorithm

F = {ready at the beginning}

n while F# 0@
{

process F
n Swoken = {objects woken by F}
Sready = {u € Syoken, Uisready}

update pivots in Syoken — Sready
F = Sready



| Apply to the LIS algorithm

F = {ready at the beginning}
while F# 0@
{

DP value computation process F

Swoken = {objects woken by F}

Readiness check Sready = {U € Syoken, U isready}
Pivot reselection update pivots in Syoken — Sready
F = Sready



| Vertex-centric Approach

Si

0000000600

dplil] = _max dp[j] +1

1<l,S;<S;j
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| Vertex-centric Approach

dpli] = max dpl[j] +1

J<i, Sj<Sj

Readiness check
DP value computation

PIvot re-selection

Above operations can be done by
a 2D range tree in 0(log®n)

I [Sun, et al. (PPoPP 2018)]




I Complexity of our parallel LIS algorithm

input n

# wake-ups O(nlogn) total wake-ups w.h.p.

per wake-up

- Compute DP values 0(log? n) by range queries
- Check readiness

- Re-select pivots



I Parallel LIS Algorithm

Using our phase-parallel framework and vertex-centric methods,
we parallelize LIS algorithm with

Nearly work-efficient:  0(nlog>n) work w.h.p.
Round-efficient: O(rlog? n) span

n = input size
r = the LIS length of the input



| Key Technigues

Pivots
Wake-up strategy
Vertex-centric readiness check

More applications in Type-2 approach
- Other range-search-based greedy or dynamic programming
- Maximal independent set (MIS) using wake-up strategy only



Cost of single # candidates In
readiness check next round

Polylog A few successors
Type-2 approach [@ (by range queries) [&’(by wake-up strategy)




Cost of single
readiness check

# candidates In
next round

Type-1 approach

Trivial

Logarithmic
(by 1-D range queries)

Type-2 approach

Polylog
(by range queries)

A few successors
(by wake-up strategy)



| Improved Bounds

*with high probability

Work Span
LIS O(nlog3n) * O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection 0(nlogn) 0(logn)”

(unweighted)
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| Improved Bounds

*with high probability

Work Span
LIS O(nlog3n)* O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection D Tem ) 0(logn)*

(unweighted)




I ‘ m p rOVGd BO U ﬂ dS *with high probability

Work Span
LIS O(nlog3n)* O(r log?n)
MIS O(n +m) 0(log?n) *
Activity Selection
(weighted) O(nlogn) O(rlogn)
Activity Selection .
(unweighted) O(nlogn) O(logn)

Huffman tree, graph coloring, SSSP, unlimited knapsack, and more In the paper



| EXperiment Setup

Hardware
- 96 CPU cores (192 hyper-threads)
- 1.5 TIB of main memory

Parallelized Algorithms
- Huffman Tree

- Activity selection
- LIS

Work-efficient algorithms generally perform well



Time (ms.)

uffman Tree

—@— Parallel
—a&— Classic seq

10° 10’
Input Size

108

21.26x

Our algorithm i1s work-efficient
O(r) span for rank r (tree height)

The rank of the test data Is low

The algorithm performs well
- 21.26x speedup to the sequential



| Activity Selection

n = 10°
1200- —=— Parallel (Type-1)  Implement with both Type-1 and -2
—&— Parallel (Type-2) ) VR 1

A1ooo- »— Classic seq Both ére~work efficient: O(n log n)
S 800 - Spanis O(r) forrank r
j:nj 600-
-E 400- The algorithm performs well on a

200- wide range of rank values

O- S

102 103 10% 10° 10°
Output size
(Rank) ~ 400k




| Longest Increasing Subsequence

Nearly work-efficient: 0(n log> n)

2
—e— Parallel - O(log“ n) overhead
100] —*— Classic seq
A Run fast on small ranks
% - Overhead in work still limits its performance
= for large ranks
=
10 ] . ] - Open problem:
1 10 100 1000 10000 - -
t)
Output size O(nlogn) work with good parallelism’

(Rank)



I summary

Motivation
- Many existing sequential iterative algorithms can be highly parallel
- Parallelize these algorithms efficiently

New Techniques: general to many algorithms
- Phase-parallel framework
- Type-1 and Type-2 approaches

New algorithms (many improving best known bounds)
- LIS, activity selection, MIS, Huffman tree, SSSP, -



I Future Work

Can LIS problem be solved in O(n log n) with good parallelism?

Can our techniques apply to other problems?



Thank you
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