PaC-trees:
Supporting Parallel and Compressed
Purely-Functional Collections

Laxman Dhulipala!, Guy Blelloch?, Yan Gu3, Yihan Sun®

"University of Maryland, 2 Carnegie Mellon University, 3UC Riverside

Artifacts available and reusable!
Library available on GitHub:
https://qithub.com/ParAlg/CPAM

https://github.com/ParAlg/CPAM

Collection Data Types [sequences, sets, maps]

* A collection of data [e.g., sequences, ordered sets, ordered maps]
* Very commonly-used in programming!

* E.g., in C++ STL: vector, (ordered) set, (ordered) map.
« Similar in other languages

{=
Jo

what is the most frequently used stl class X

Q Al E News & Shopping [Images [] Videos i More Tools

About 312,000,000 results (0.60 seconds)

The most commonly used features of STL are :

e [terator.

« Vector. [Sequence]

e Stack.

e Queue.

e Priority Queue.

" Map. ‘ Search tree
e Set.

e Pair.

Collection for inverted index

* Collection of words, each mapping to a collection of documents

Document 1: Word Document list
The largest blue whale ever recorded had a
length from head to tail of 110 feet and 17 inches,, “ blue 1,2
Document 2: ‘ whale 1
World's largest blue .dl.amond to come to auction largest 12
has sold for $57.5 million. p
calories 3
Docu_ment 3: ' diamond 2
Banging your head against a wall for one hour
head 1,3

burns 150 calories. P

million 2

Collection for inverted index

* Collection of words, each mapping to a collection of documents

Document 1: Word Document list

The largest blue whale ever recorded had a
length from head to tail of 110 feet and 17 inchesy “ blue 1,2, 4

Document 2: whale 1,4

World's largest blue diamond to come to auction

l t 1,2
has sold for $57.5 million. ~ arges

calories 3,4

burns 150 calories. p head 1,3

million 2, 4

Document 4:
Blue whales eat half a million calories in one
mouthful. p

Docu_ment 3: ' diamond 2
Banging your head against a wall for one hour

eat 4
mouthful 4

Collection for graph processing

* A collection of vertices, each mapping to a collection of edges

Collection for geometric queries

* A collection of points in 1D or 2D
* Find all points in a certain range

. 4
‘?1;5.‘ Lo
¥, I
o (a,b) =
)
A 1
SN I NN NN NN ENENENENENEEEEEEE, '..;‘fL
n i !(",\
54 o
3 !?‘L,_‘ \
L
g.‘h p
o . o
F ¥y L e A
= G e
J’-wfh s—w"" 3 !;fL,_;

Collection Data Types [sequences, sets, maps]
In parallel?

* [Goal 1] Full interface: as needed in the applications!

Point updates/queries Bulk updates/queries

find build flatten
next/previous map reduce filter
rank/n-th range append reverse
first/last multi-insert/multi-delete

insert/delete union/intersection/difference

Collection Data Types [sequences, sets, maps]
In parallel?

* [Goal 1] Full interface: as needed in the applications!

* [Goal 2] Concurrency: Multiple threads can work on the same data
structure safely and correctly
 Functional data structure! [immutable]
 Each thread works on a snapshot

 Used in many existing parallel languages/libraries [frief:ILEINLEICIYL I

build flatten
* [Goal 3] Parallelism: Bulk operations in parallel map reduce filter
range append reverse

multi-insert/multi-delete
union/intersection/difference

P-trees [sunetal, proppi71 fOr parallel collections

 Parallel binary search trees P-tree in the PAM
library

* Functional data structure using path-copying
« Standard way in functional languages

 General interface for collections: appliable in
many applications

insert(T1,4)

P-trees for parallel collections have large space
overhead!

Key-value ~8 bytes
Child pointers 8*2 bytes N
Subtree size 4 bytes

24+ bytes
Ref. cnt. 4 bytes > Y
Auxiliaryinfo K J

insert(T1,4)

[Goal 4] Space-efficiency: avoid high space overhead!

Our PaC-tree and CPAM library

» full interface of sequences, ordered sets, ordered maps =>»
applicable to a wide range of applications

« functional/immutable
* highly-parallel
» fast both in theory and in practice

+ space-efficient!

How to Be Space-Efficient?
Put More Data in One Node?

« Multi-way search trees, such as functional B-tree?
« ® path-copying is expensive

/

\\
N,
\\
N,

o1 34| [6]7/9] [e]7]8ly

_B-tree (multi-way search tree) -

Put More Data in One Node

But Keep the Tree Binary!
C-tree in Aspen [phulipala et al., PLDI"19)
» Aspen: a graph processing library

* Binary trees with multiple entries in a tree node

 Separate the first entry (called head) for copying
* ® Designed for maintaining edges in graphs, not for general collections

~

-~

C-tree in Aspen (Compressing nodes in BST) y

Keep the Tree Binary
But Put More Data Only in LEAVES!

Our new PaC-tree

- [Balance invariant] Weight-balanced: left/right subtree sizes differ within a constant facto
* [Blocking invariant] Any subtree of size B to 2B will be blocked

* The blocks can be further compressed
* We use delta encoding: store the difference relative to the previous

Lo
OEICH 17 19 24 24 29 33 42 50

\J Al Al Al Al Al Al Al

Encoded data: BV 2 5 O 5 4 o 8
8

Pac-tree of size 14, B=2

Keep the Tree Binary
But Put More Data Only in LEAVES!

Our new PaC-tree

« [Balance invariant] Weight-balanced: left/right subtree sizes differ within a constant facto
* [Blocking invariant] Any subtree of size B to 2B will be blocked

*Internal p c_trees:
* Low space usage

» Parallel and efficient algorithms
O]172] 6) - L

-
-
-
> ——
-
-
-

415/17]9 718]9
\(Our new) PaC-tree (Compressing leaves in BST) -

Y

~~
~
~
~
S
il

PaC-tree - Space Bounds

PaC-trees:
v' Low space usage
? Parallel and efficient algorithms

Theorem. The total space of a PaC-tree with block size B +
delta encoding, on a set E of n integer keys is:
s(E) +0(n/B + B)

s(E) = the space to store E in an array using delta encoding [lower bound]

Extended Join-based framework in PAM

* The function “join” Is a — all other algorithms are based on “join”
 Path-copying: just copy a few nodes in join

T =Join(T;,e, Tg) : T, and Ty are two trees, e Iis an entry.

T, <e<Tp

* Returns avalidtree T =T, U {e} U Ty

~
|

(Rebalance if necessary)

Extended Join-based framework in PAM
* How to extend the algorithms to PaC-trees?

* Deal with the blocks?
 Add a primitive expose(T), returns a “left child”, a “root” and a “right child”

8 expose expose 1) @ 2)
3 oliufig = @K, ®, [oofufr2 STiT3 1312 @ /
0

1(2|{4]|5|6 011[2]4]5]|6

B=3 in the examples

 We carefully redesigned “join” and “expose” abstractions, and keep the high-
level algorithmic ideas in PAM unchanged!

 Keep blocking invariant true all the time!

Example: combining two trees

(example for in-place updates. Functional updates

union(T4,T>) can be performed by copying corresponding

if T. — @ then return T nodes in the join algorithm.)
1= 2

if T, = @ then return T; +—
(L, ko, Ry) = expose(T,) +—
(L1, b, Ry) =split(Ty, k2)

In parallel:

T, =Union(Ly, Ly)

Tr =Union(Ry, Ry)
return Join(Ty, k3, Tg)

19

Example: combining two trees

(example for in-place updates. Functional updates

union(T4,T>) can be performed by copying corresponding
if T. = ¢ then return T nodes in the join algorithm.)
1~ 2

if T, = @ then return Ty

(L, ko, Ry) = expose(T,) +—
(L1, b, Ry) =split(Ty, k) <=
In parallel:

T, =Union(Ly, Ly)

Tr =Union(Ry, Ry)
return Join(Ty, k3, Tg)

19 @ k,

Example: combining two trees

(example for in-place updates. Functional updates

union(T4,T>) can be performed by copying corresponding
if T. = ¢ then return T nodes in the join algorithm.)
1~ 2

if T, = @ then return Ty
(Ly, ko, Ry) = expose(T,)
(L1, b, Ry) =split(Ty, k) <=
In parallel:
T, =Union(Ly,L;) <—
Tgr =Union(Ry,Ry)
return Join(Ty, k3, Tg)

/C@\ 19 @ @

2. &
L, ?

20(21| |25|28

Example: combining two trees

(example for in-place updates. Functional updates

union(T4,T>) can be performed by copying corresponding
if T. = ¢ then return T nodes in the join algorithm.)
1~ 2

if T, = @ then return Ty
(Ly, ko, Ry) = expose(T,)
(L1, b, Ry) =split(Ty, k2)
In parallel:
T, =Union(Ly,L;) <—
Tgr =Union(Ry,Ry)
return Join(Ty, k3, Tg)

_@ (3 S 23,

Example: combining two trees

(example for in-place updates. Functional updates

union(T4,T>) can be performed by copying corresponding
if T. = ¢ then return T nodes in the join algorithm.)
1~ 2

if T, = @ then return Ty
(Ly, ko, Ry) = expose(T,)
(L1, b, Ry) =split(Ty, k2)
In parallel:
T, =Union(Ly,L;) <—
Tgr =Union(Ry,Ry)
return Join(Ty, k3, Tg)

e :

20(21| |23|25|28|33

Example: combining two trees

(example for in-place updates. Functional updates

union(T4,T>) can be performed by copying corresponding
if T. = ¢ then return T nodes in the join algorithm.)
1~ 2

if T, = @ then return Ty
(Ly, ko, Ry) = expose(T,)
(L1, b, Ry) =split(Ty, k2)
In parallel:
T, =Union(Ly, Ly)
Tr =Union(Ry, Ry)
return Join(Ty, k,, Tg) <+——

15

19

20121 [23]25|28|33

(Theoretical guarantees are provided in the paper)

Lots of Functions and Applications Supported

 Functions supported
« Sequences: Build, map, filter, reduce, take, n-th, findFirst, append, reverse

 Ordered set and map: (most functions for sequences), next, previous, rank, range,
insert, union, intersection, difference, ...

 All of them have theoretical bounds

* Applications:
* 1D interval queries
2D range queries
* Inverted indexes
 Graph processing

Experiments
 7/2-core Dell PowerEdge R930 (with two-way hyper-threading)

* 1TB of main memory

* Using C++ and the work-stealing scheduler from Parlaylib

Microbenchmarks, compared to P-trees (PAM)

(Functional tree, no blocking
leaves or compression)

m PaC-tree (no encoding)

[1.61GB] 2.5x saving

PaC-tree (encoded)

m P-tree (PAM)
[4.00GB]

Input size n = 108,
block size B = 128
64bit-64bit key-values

Microbenchmarks, compared to P-trees (PAM)

(Functional tree. no blocking
Tradeoff of blocking + encoding on)

- may improve performance because of smaller memory
6 footprint +1/0 friendliness

- can also cause overhead due to encoding/decoding oding)
4
PaC-trees achieve similar or better time on most tested ,;,
, functions, while being 2-4 times more space-efficient

than P-trees in PAM
0 IIIIIIIIIIII 1R 'R IR 0CR

Q
©
p=

filter
find

Q
O
c
©
—

Build
Union

Input size n = 108,
block size B = 128
(Lower is better) 64bit-64bit key-values

reduce

multi-insert
difference

Intersection

PaC-trees applied to graphs, compared to

trees (Aspen) (Functlor.la.l tree, blockmg.all tree nodes,
specifically for edges in graphs)

C-

Running time/memory relative to the best

BFS 1

o
o
£
Q
=

o
o
£
Q
=

LiveJournal com-Orkut Twitter

O
(a8

O
(a8

O
(a8

M|S_
BFS_
M|S_
Mermory S
BFS_
M|S_

m Pac-tree mAspen
Both PaC-tree and Aspen use delta encoding

(Lower is better)

PaC-tree is almost always
faster than Aspen on all
benchmarks and graphs

PaC-tree is also 1.2-1.5x more
space efficient than Aspen

More experiments

* Performance vs. block size
* Space vs. block size

* Inverted indices

* interval tree

2D range tree

* graph streaming

* Some of them also requires augmentation, see more details in the paper.

Summary

* PaC-Tree
 Blocked leaves, can be further encoded
* Provable guarantee in both space and time
 Safe and efficient for parallelism

« CPAM library

* Full interface for collection for a wide range of applications
 Qutperforms previous non-compressed data structure for collections (P-trees),

and more space-efficient!
 Qutperforms previous compressed data structure for certain applications (C-trees for graph processing)

and more space-efficient!

Artifacts available and reusable!
Library available on GitHub:
https://github.com/ParAlg/CPAM

https://github.com/ParAlg/CPAM

