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Models and Background

• Shared-memory multi-core setting

• Work-span model

• Work: total number of operations (sequential running time)

• Span (depth): longest dependence chain (parallel time)

• We’ll see both theoretical analysis and experimental results in this talk ☺
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• On graph 𝑮 = (𝑽, 𝑬,𝒘), with edge weight function 𝒘: 𝒆 ↦ ℝ+ and a 
source 𝒔 ∈ 𝑽, compute the shortest distances (paths) of all other 
vertices to 𝒔. Let 𝒏 = |𝑽|, 𝒎 = |𝑬|.

• Dijkstra’s algorithm + priority queue
• Work efficient: process each vertex/edge once

• But hard to parallelize?

• Bellman-Ford
• Redundant work: process multiple times

• But parallelism is straightforward

Single-source shortest paths (SSSP)
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SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], 

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

Practical implementations are 

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15], 

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG + 

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority 

queues:

PRAM [BDM+96], [CH94], [CDP96], 

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14], 

[HKP+13], [LJ13], [LS12], [SL20], [ST05], 

[ZMS19]

Others: [BKS15], [Sanders98]
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• Relax those close to the source, but multiple of them together in parallel

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor
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• Relax those close to the source, but multiple of them together in parallel

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor
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Practical implementations: 𝚫-stepping
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Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ = 10
10

12

14

131
1

6 2915

Δ 2Δ 3Δ 4Δ

• Relax those close to the source, but multiple of them together in parallel
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Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ = 10
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• Relax those close to the source, but multiple of them together in parallel
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• Relax those close to the source, but multiple of them together in parallel

• Edges crossing boundary: Dijkstra

• Edges within a single range: Bellman-Ford

• Try to avoid redundant work (not relaxing vertices 
far away), but support parallelism

Practical implementations: 𝚫-stepping
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𝚫-stepping: challenges

• In theory, no known bounds for general graphs
• Has been analyzed on random graphs

• The span can be as larger as O(n) with a shallow shortest-path tree

• In practice, how to select the best 𝚫?
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𝚫-stepping and 𝚫
• (Relative running time)

Same graph: 

• In each of the figure 

• Compare the red stars for 
all curves

• Best 𝚫 varies for different 
implementations 

• 𝟐𝟏𝟏 on Twitter!

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 12



𝚫-stepping and 𝚫
• (Relative running time)

Same Implementation: 

• For four figures 

• Compare the red stars of 
the curves with the same 
color

• Best 𝚫 varies for different 
graphs

• 𝟐𝟗 for GAPBS!

• First three graphs has 
the same edge-weight 
distribution

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 13



𝚫-stepping and 𝚫
• (Relative running time)

Same graph & same 
implementation

• Each curve

• Sensitive to the value of Δ

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 14



𝚫-stepping and 𝚫
• (Relative running time)

Usually have to first 
exhaustively search for   
the best 𝚫 for each            
graph-implementation

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 15



SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], 

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

Practical implementations are 

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15], 

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG + 

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority 

queues:

PRAM [BDM+96], [CH94], [CDP96], 

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14], 

[HKP+13], [LJ13], [LS12], [SL20], [ST05], 

[ZMS19]

Others: [BKS15], [Sanders98]

No interesting 

worst-case 

bounds

Needs tunning 

for parameter
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Theoretical parallel SSSP algorithms

• Work-span tradeoff (“transitive closure bottleneck” [KR90])
• No known exact solution enables small work and span simultaneously

• Low span is hard … consider a chain

• Usually needs preprocessing

• No known implementation (or slower than 𝚫-stepping)

• Need a lot shortcuts: to achieve 𝑶(𝒏𝟏−𝝐) span requires 
𝛀(𝒏𝟏+𝝐) shortcuts
• Shortcuts increase 𝒎, which means more work!
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SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], 

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are 

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15], 

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG + 

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority 

queues:

PRAM [BDM+96], [CH94], [CDP96], 

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14], 

[HKP+13], [LJ13], [LS12], [SL20], [ST05], 

[ZMS19]

Others: [BKS15], [Sanders98]

No interesting 

worst-case 

bounds

Needs tunning 

for parameter
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Parallel / concurrent priority queues for SSSP

• Parallelize or support concurrent operations in Dijkstra’s 
algorithm
• Enable multiple updates (decreaseKey)

• Later work allows multiple extractMin (approximately)

• However, Dijkstra’s algorithm itself is very sequential
• No interesting span bounds 

• Slow in practice
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SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], 

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are 

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15], 

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG + 

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority 

queues:

PRAM [BDM+96], [CH94], [CDP96], 

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14], 

[HKP+13], [LJ13], [LS12], [SL20], [ST05], 

[ZMS19]

Others: [BKS15], [Sanders98]

No good 

span (based 

on Dijkstra)

Not as fast 

as Δ-

stepping

No worst-

case bounds

Needs 

tunning
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We want to have parallel SSSP with …

Theoretical Efficiency

Practicality
Good abstraction and 

easy implementation
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Theoretical Efficiency

Practicality
Good abstraction and 

easy implementation

Our new SSSP solutions

Theoretical Efficiency
Worst-case work and span bounds, matching previous 

bounds (under assumptions)

Avoid shortcuts

Practicality

Competitive or faster than 

all existing software

Stable and parameter-

insensitive performance

New priority queue ADT

Simple algorithms on top

Efficient cost bounds

Efficient implementation for 

multiple algorithms
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Our approach
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Our approach

New framework: stepping 

algorithm framework

New ADT: Lazy-Batched Priority 

Queue (LaB-PQ)

New algorithm: 𝜌-stepping and 

Δ*-stepping
27



Our approach

New ADT: Lazy-Batched Priority 

Queue (LaB-PQ)

New algorithm: 𝜌-stepping and 

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping
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Our approach

New ADT: Lazy-Batched Priority 

Queue (LaB-PQ)

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping
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Our approach

New ADT: Lazy-Batched Priority Queue (LaB-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping
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Our results: New or improved bounds

New ADT: Lazy-Batched Priority Queue (LaB-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New work-span bounds
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Our results: Efficient implmentations

New ADT: Lazy-Batched Priority Queue (LaB-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New unified implementation
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Stepping algorithm framework
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SSSP is notoriously hard in parallel

Radius stepping: BGST16

𝚫-stepping 

(also some based on 

Bellman-Ford)
Dijkstra
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High-level similarities

•Extract a subset of the vertices in the frontier and relax
their neighbors
• Vertices with distances under a certain threshold

•Repeat until all vertices are settled
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Stepping algorithm framework

Compute the threshold 

in each “step”

Update the new 

distances to the PQ

tentative 

distance
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Stepping algorithm framework
Dealing with substeps: 

if a step does not finish, rerun
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Stepping algorithm framework

Compute the threshold 

in each “step”

Update the new 

distances to the PQ
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Our ADT and data 
structure
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Motivated by the “batch-dynamic” setting

• The batch-dynamic data structures take a batch (bulk) of updates or 
queries and execute them in parallel
• Can usually design efficient parallel algorithms with low work and span

• Some examples: hashtables [SB14], search trees [BFS16, BFS18], binary heap [WYGS20], 
dynamic Euler-tour [TDB19], rake-compress trees [AABD’19]

41



What operations needed for the stepping algorithms?

•Update a vertex’s state in the priority queue 
(insert/decrease-key)

•Extract all vertices with keys below a certain threshold
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Lab-PQ Interface

• Update: commit an update to the data structure
• but not execute immediately

• Extract: report and delete a batch of elements
• First apply all previous changes in parallel
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A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1

3 6

3 4

3

1
Update()

• Mark a bit for the path from the 

leaf to root when update

• When updates are in parallel, 

use test-and-set

• Only continue when test-and-set 

succeed

0

0

0

0

0

1

1

1

1
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A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1

2 3

2 3

2

1
Apply all modification

• Apply the batch using divide-

and-conquer

• Skip a subtree if not marked

• Otherwise deal with two 

subtrees in parallel

0

0

0

0

0

1

1

1

1
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A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1
Extract(𝜽)

• Extract everything ≤ 𝜽

• Skip a subtree with key > 𝜽

• Update internal keys and 

remove marks

Extract(2)
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A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1
• If 𝒃 leaves are involved in this 

batch, in total 𝑶 𝒃 𝐥𝐨𝐠
𝒏

𝒃

nodes are visited

• Each is visited a constant 

number of times
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Theoretical analysis
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Theoretical analysis based on (𝒌, 𝝆) graph

• Without shortcut, it seems hard to show any span bounds 𝒐(𝒏) for general 
graphs …

• Consider some graph invariants?

• ෨𝑂(𝑛) span bound for Bellman-Ford should be understood as ෨𝑂(𝑑), where 
𝑑 is the shortest path tree depth

• (𝒌, 𝝆)-graph [BGST’16]: each vertex can reach its 𝝆 closest vertices in 𝒌 
hops
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Theoretical analysis based on (𝒌, 𝝆) graph

• (𝒌, 𝝆)-graph [BGST’16]: each vertex can reach its 𝝆 closest vertices in 𝒌 
hops
• Fix 𝝆, use 𝒌𝝆 as the smallest 𝒌 to make a graph a (𝒌, 𝝆)-graph

• 𝒌𝒏 is the shortest path tree depth

• What are the values of 𝑘𝜌 for real-world graphs?

(1,3)-graph

(2,4)-graph

(2,6)-graph

𝑘3 = 1
𝑘4 = 2
𝑘6 = 2
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𝒌 − 𝝆 properties for real-world graphs

• Number of vertices around 𝟏𝟎𝟔 to 𝟏𝟎𝟖

• For scale-free networks, 𝒌𝝆 is usually small. 𝑶 log 𝒏 even for large 𝝆

• For road graphs, 𝒌𝝆 varies significantly with 𝝆

scale-free social 

and web networks

Road graphs 

(almost planar)
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Theoretical results

• Extraction lemma, distribution lemma, data structure costs

Assume smallest edge weight is 1, 𝐿 is the largest edge weight, 

(U) means the bound works only on undirected graphs
55



Theoretical results

• Extraction lemma, distribution lemma, data structure cost

𝑂(log 𝜌𝐿) improvement 

on undirected graphs
(𝐿 is the largest edge weight)

Slightly worse work 

bound but can apply to 

directed case
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Implementation details
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Recall that we implement many stepping algorithms

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New unified implementation
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A practically-efficient implementation for LaB-PQ

• JUST USE AN ARRAY

• Cache-friendly

• Easy to implement

Running time of extraction when the number 

of extracted elements increases

Tournament tree vs. Array 

*We assume total #elements is 108, which is 

approximately the size of real-world graphs
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Sparse/Dense optimization

• Motivated by Ligra [SB13]

• Sparse: use an array to keep track of the vertices
• Require less space, no redundant work

• Dense: use boolean flags to indicate if the vertices are in the frontier
• Better cache locality, easy to maintain

0 2 4 5 7

0 1 2 3 4 5 6 7

T F T F T T F T

Sparse Dense

Pack the vertices in frontier Mark the vertices in frontier as true
64



Bucket fusion optimization

• Motivated by GraphIt [ZBC+20]

• If the work in one round is not sufficient, explore multi-hop neighbors 
instead of one-hop neighbors

• Reduce synchronization costs 
• Critical for large-diameter graphs (e.g., road networks and grid graphs)

One-hop neighbors Two-hop neighbors
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Experiments
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Set up

• A 96-core quad-socket machine (192 hyperthreads)
• 1.5TB main memory and 36MB*4 L3 cache

• C++ codes compiled with g++ 7.5.0 using CilkPlus with -O3 flag
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Set up

https://github.com/ucrparlay/parallel-sssp

• 7 graphs tested: 
• 5 social and web graphs (scale-free networks): com-orkut (OK), Livejournal (LJ), 

Twitter (TW), Friendster (FT), and Webgraph (WB)
• 2 road graphs: RoadUSA (USA), Germany (GE)
• 3 to 89 million vertices, 32 million to 3.6 billion edges
• Scale-free networks use uniformly distributed edge weight [1, 218]
• Road network has edge weight provided in the dataset

• 7 implementations tested:
• 𝚫-stepping: GAPBS [BAP15, ZYB+20], Galois [NLP13], Julienne [DBS17], ours (PQ-𝚫)
• Bellman-Ford: Ligra [SB13], ours (PQ-BF)
• 𝝆-stepping: ours (PQ-𝝆)

• Our code is publicly available
• https://github.com/ucrparlay/parallel-sssp
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Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26 

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18 

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18 

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00 

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64 

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16 

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16 

Heatmap: parallel running time relative to fastest on 
each graph

For all Δ-stepping we use the best Δ. PQ-𝜌-best uses best 𝜌, and PQ-𝜌-fix uses a fixed value of 𝜌 

for scale-free networks, and road graphs, respectively

(scale-free networks)

*: ours
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Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26 

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18 

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18 

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00 

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64 

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16 

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16 

Our implementations are always the fastest

(scale-free networks)

For all Δ-stepping we use the best Δ. PQ-𝜌-best uses best 𝜌, and PQ-𝜌-fix uses a fixed value of 𝜌 

for scale-free networks, and road graphs, respectively

*: ours
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Scale-free networks: 𝝆-stepping is faster than all 
existing code by at least 40%

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26 

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18 

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18 

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00 

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64 

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16 

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16 

*: ours
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Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26 

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18 

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18 

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00 

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64 

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16 

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16 

*: ours

Our 𝚫-stepping is fastest on road graphs, and our 𝝆-
stepping is competitive
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Number of visit (enqueue) per vertex
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With careful coding, Bellman-Ford is already close to 
optimal on scale-free networks (2.5 #enqueue per vertex)
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𝝆-stepping is almost optimal (very close to 1)

Small graphs, act 

like Bellman-Ford

Directed graph, 

some vertices not 

reachable
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Room for improvement for road graphs 
(but these graphs are relatively small)
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Vertices visited per step

Friendster Twitter Road-USA
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𝝆-stepping: sufficient but minimal work to saturate all 
processors, independent with graph properties

Road-USAFriendster Twitter
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𝝆-stepping: can be too eager for large diameter graphs

Friendster Twitter Road-USA
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Varying 𝚫 and varying 𝝆

FT USATW 𝜌-stepping

Δ-stepping
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Other experiments

• More experimental results
• difference source vertices 

• different machine

• Average #visits per edge

• given in the full version of this paper
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Summary
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Our approach

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping
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Our results: theoretical analysis

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New or improved work-span bounds
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Our results: efficient implementations

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm: 

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms: 

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New unified implementations
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New algorithm: 𝝆-stepping and 𝚫*-stepping

• Extremely simple on top of the LaB-PQ
• Just use an array

• Good theoretical guarantee: similar to Radius-Stepping

• Avoid sub-steps in 𝚫-stepping and Radius-Stepping

• 𝝆-stepping
• Insensitive to the value of 𝝆
• Especially good on scale-free networks

• 𝚫*-stepping
• Simply remove the FinishCheck in 𝚫-stepping
• Especially good on road networks
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• Full version: https://arxiv.org/abs/2105.06145

• Code: https://github.com/ucrparlay/Parallel-SSSP

• Contact: Xiaojun Dong (xdong038@ucr.edu)
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