
Efficient algorithms and
implementations for

parallel SSSP

Xiaojun Dong1, Yan Gu1, Yihan Sun1 and Yunming Zhang2

1 University of California, Riverside

2 Massachusetts Institute of Technology

Models and Background

• Shared-memory multi-core setting

• Work-span model

• Work: total number of operations (sequential running time)

• Span (depth): longest dependence chain (parallel time)

• We’ll see both theoretical analysis and experimental results in this talk ☺

2

• On graph 𝑮 = (𝑽, 𝑬,𝒘), with edge weight function 𝒘: 𝒆 ↦ ℝ+ and a
source 𝒔 ∈ 𝑽, compute the shortest distances (paths) of all other
vertices to 𝒔. Let 𝒏 = |𝑽|, 𝒎 = |𝑬|.

• Dijkstra’s algorithm + priority queue
• Work efficient: process each vertex/edge once

• But hard to parallelize?

• Bellman-Ford
• Redundant work: process multiple times

• But parallelism is straightforward

Single-source shortest paths (SSSP)

3
4

2

1

6

5

17

9
14

13

15

2

4

1

source

3

SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01],

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

Practical implementations are

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15],

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG +

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority

queues:

PRAM [BDM+96], [CH94], [CDP96],

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14],

[HKP+13], [LJ13], [LS12], [SL20], [ST05],

[ZMS19]

Others: [BKS15], [Sanders98]

4

• Relax those close to the source, but multiple of them together in parallel

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ 2Δ 3Δ 4Δ

Δ = 10
10

12

19

23

33

1
1

6 15

5

• Relax those close to the source, but multiple of them together in parallel

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ = 10

110

12

16

131

6 3315

Δ 2Δ 3Δ 4Δ 6

• Relax those close to the source, but multiple of them together in parallel

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ = 10
10

12

14

131
1

6 3315

Δ 2Δ 3Δ 4Δ 7

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ = 10
10

12

14

131
1

6 2915

Δ 2Δ 3Δ 4Δ

• Relax those close to the source, but multiple of them together in parallel

8

Practical implementations: 𝚫-stepping

For each step

While there remain potential unsettled vertices

For each outgoing edge

Relax the neighbor

Δ = 10
10

12

14

131
1

6 2915

Δ 2Δ 3Δ 4Δ

• Relax those close to the source, but multiple of them together in parallel

9

• Relax those close to the source, but multiple of them together in parallel

• Edges crossing boundary: Dijkstra

• Edges within a single range: Bellman-Ford

• Try to avoid redundant work (not relaxing vertices
far away), but support parallelism

Practical implementations: 𝚫-stepping

Δ = 10
10

12

14

131
1

6 2915

Δ 2Δ 3Δ 4Δ 10

𝚫-stepping: challenges

• In theory, no known bounds for general graphs
• Has been analyzed on random graphs

• The span can be as larger as O(n) with a shallow shortest-path tree

• In practice, how to select the best 𝚫?

11

𝚫-stepping and 𝚫
• (Relative running time)

Same graph:

• In each of the figure

• Compare the red stars for
all curves

• Best 𝚫 varies for different
implementations

• 𝟐𝟏𝟏 on Twitter!

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 12

𝚫-stepping and 𝚫
• (Relative running time)

Same Implementation:

• For four figures

• Compare the red stars of
the curves with the same
color

• Best 𝚫 varies for different
graphs

• 𝟐𝟗 for GAPBS!

• First three graphs has
the same edge-weight
distribution

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 13

𝚫-stepping and 𝚫
• (Relative running time)

Same graph & same
implementation

• Each curve

• Sensitive to the value of Δ

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 14

𝚫-stepping and 𝚫
• (Relative running time)

Usually have to first
exhaustively search for
the best 𝚫 for each
graph-implementation

Twitter: n=42M, m=1.47B Friendster: n=65M, m=3.61B

RoadUSA: n=12M, m=32MWebGraph: n=89M, m=2.04B 15

SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01],

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

Practical implementations are

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15],

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG +

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority

queues:

PRAM [BDM+96], [CH94], [CDP96],

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14],

[HKP+13], [LJ13], [LS12], [SL20], [ST05],

[ZMS19]

Others: [BKS15], [Sanders98]

No interesting

worst-case

bounds

Needs tunning

for parameter

16

Theoretical parallel SSSP algorithms

• Work-span tradeoff (“transitive closure bottleneck” [KR90])
• No known exact solution enables small work and span simultaneously

• Low span is hard … consider a chain

• Usually needs preprocessing

• No known implementation (or slower than 𝚫-stepping)

• Need a lot shortcuts: to achieve 𝑶(𝒏𝟏−𝝐) span requires
𝛀(𝒏𝟏+𝝐) shortcuts
• Shortcuts increase 𝒎, which means more work!

3 4

2
1

6

5

17

914

13

15
2

4

1

18

32
17

SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01],

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15],

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG +

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority

queues:

PRAM [BDM+96], [CH94], [CDP96],

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14],

[HKP+13], [LJ13], [LS12], [SL20], [ST05],

[ZMS19]

Others: [BKS15], [Sanders98]

No interesting

worst-case

bounds

Needs tunning

for parameter

19

Parallel / concurrent priority queues for SSSP

• Parallelize or support concurrent operations in Dijkstra’s
algorithm
• Enable multiple updates (decreaseKey)

• Later work allows multiple extractMin (approximately)

• However, Dijkstra’s algorithm itself is very sequential
• No interesting span bounds

• Slow in practice

21

SSSP is notoriously hard in parallel

Theoretical algorithms:

[BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01],

[Meyer02], [SS99], [Spencer97], [UY91]

Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are

based on 𝚫-stepping [Meyer-

Sanders 03]:

Julienne [DBS17], GAPBS [BAP15],

Galois [NLP13], GraphIt [ZBC+20]

Other platforms: [BPG+17], [DBG +

14], [MAB+10], [ZCZM16], [WDY+16]

Parallel / concurrent priority

queues:

PRAM [BDM+96], [CH94], [CDP96],

[DPS96], [RCP+94]

Concurrent: [AKLS15], [CMH14],

[HKP+13], [LJ13], [LS12], [SL20], [ST05],

[ZMS19]

Others: [BKS15], [Sanders98]

No good

span (based

on Dijkstra)

Not as fast

as Δ-

stepping

No worst-

case bounds

Needs

tunning

22

We want to have parallel SSSP with …

Theoretical Efficiency

Practicality
Good abstraction and

easy implementation

23

Theoretical Efficiency

Practicality
Good abstraction and

easy implementation

Our new SSSP solutions

Theoretical Efficiency
Worst-case work and span bounds, matching previous

bounds (under assumptions)

Avoid shortcuts

Practicality

Competitive or faster than

all existing software

Stable and parameter-

insensitive performance

New priority queue ADT

Simple algorithms on top

Efficient cost bounds

Efficient implementation for

multiple algorithms

24

Our approach

26

Our approach

New framework: stepping

algorithm framework

New ADT: Lazy-Batched Priority

Queue (LaB-PQ)

New algorithm: 𝜌-stepping and

Δ*-stepping
27

Our approach

New ADT: Lazy-Batched Priority

Queue (LaB-PQ)

New algorithm: 𝜌-stepping and

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

28

Our approach

New ADT: Lazy-Batched Priority

Queue (LaB-PQ)

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

29

Our approach

New ADT: Lazy-Batched Priority Queue (LaB-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

30

Our results: New or improved bounds

New ADT: Lazy-Batched Priority Queue (LaB-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New work-span bounds

31

Our results: Efficient implmentations

New ADT: Lazy-Batched Priority Queue (LaB-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New unified implementation

32

Stepping algorithm framework

33

SSSP is notoriously hard in parallel

Radius stepping: BGST16

𝚫-stepping

(also some based on

Bellman-Ford)
Dijkstra

35

High-level similarities

•Extract a subset of the vertices in the frontier and relax
their neighbors
• Vertices with distances under a certain threshold

•Repeat until all vertices are settled

36

Stepping algorithm framework

Compute the threshold

in each “step”

Update the new

distances to the PQ

tentative

distance

37

Stepping algorithm framework
Dealing with substeps:

if a step does not finish, rerun

38

Stepping algorithm framework

Compute the threshold

in each “step”

Update the new

distances to the PQ

39

Our ADT and data
structure

40

Motivated by the “batch-dynamic” setting

• The batch-dynamic data structures take a batch (bulk) of updates or
queries and execute them in parallel
• Can usually design efficient parallel algorithms with low work and span

• Some examples: hashtables [SB14], search trees [BFS16, BFS18], binary heap [WYGS20],
dynamic Euler-tour [TDB19], rake-compress trees [AABD’19]

41

What operations needed for the stepping algorithms?

•Update a vertex’s state in the priority queue
(insert/decrease-key)

•Extract all vertices with keys below a certain threshold

43

Lab-PQ Interface

• Update: commit an update to the data structure
• but not execute immediately

• Extract: report and delete a batch of elements
• First apply all previous changes in parallel

45

A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1

3 6

3 4

3

1
Update()

• Mark a bit for the path from the

leaf to root when update

• When updates are in parallel,

use test-and-set

• Only continue when test-and-set

succeed

0

0

0

0

0

1

1

1

1

47

A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1

2 3

2 3

2

1
Apply all modification

• Apply the batch using divide-

and-conquer

• Skip a subtree if not marked

• Otherwise deal with two

subtrees in parallel

0

0

0

0

0

1

1

1

1

48

A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1
Extract(𝜽)

• Extract everything ≤ 𝜽

• Skip a subtree with key > 𝜽

• Update internal keys and

remove marks

Extract(2)

49

A theoretically-efficient implementation

• Use a tournament tree
• Since all entries are leaf nodes, dealing with concurrency issues is much easier

3 8 4 6

3 1 54

13

1
• If 𝒃 leaves are involved in this

batch, in total 𝑶 𝒃 𝐥𝐨𝐠
𝒏

𝒃

nodes are visited

• Each is visited a constant

number of times

50

Theoretical analysis

51

Theoretical analysis based on (𝒌, 𝝆) graph

• Without shortcut, it seems hard to show any span bounds 𝒐(𝒏) for general
graphs …

• Consider some graph invariants?

• ෨𝑂(𝑛) span bound for Bellman-Ford should be understood as ෨𝑂(𝑑), where
𝑑 is the shortest path tree depth

• (𝒌, 𝝆)-graph [BGST’16]: each vertex can reach its 𝝆 closest vertices in 𝒌
hops

52

Theoretical analysis based on (𝒌, 𝝆) graph

• (𝒌, 𝝆)-graph [BGST’16]: each vertex can reach its 𝝆 closest vertices in 𝒌
hops
• Fix 𝝆, use 𝒌𝝆 as the smallest 𝒌 to make a graph a (𝒌, 𝝆)-graph

• 𝒌𝒏 is the shortest path tree depth

• What are the values of 𝑘𝜌 for real-world graphs?

(1,3)-graph

(2,4)-graph

(2,6)-graph

𝑘3 = 1
𝑘4 = 2
𝑘6 = 2

53

𝒌 − 𝝆 properties for real-world graphs

• Number of vertices around 𝟏𝟎𝟔 to 𝟏𝟎𝟖

• For scale-free networks, 𝒌𝝆 is usually small. 𝑶 log 𝒏 even for large 𝝆

• For road graphs, 𝒌𝝆 varies significantly with 𝝆

scale-free social

and web networks

Road graphs

(almost planar)

54

Theoretical results

• Extraction lemma, distribution lemma, data structure costs

Assume smallest edge weight is 1, 𝐿 is the largest edge weight,

(U) means the bound works only on undirected graphs
55

Theoretical results

• Extraction lemma, distribution lemma, data structure cost

𝑂(log 𝜌𝐿) improvement

on undirected graphs
(𝐿 is the largest edge weight)

Slightly worse work

bound but can apply to

directed case

56

Implementation details

57

Recall that we implement many stepping algorithms

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New unified implementation

58

A practically-efficient implementation for LaB-PQ

• JUST USE AN ARRAY

• Cache-friendly

• Easy to implement

Running time of extraction when the number

of extracted elements increases

Tournament tree vs. Array

*We assume total #elements is 108, which is

approximately the size of real-world graphs

59

Sparse/Dense optimization

• Motivated by Ligra [SB13]

• Sparse: use an array to keep track of the vertices
• Require less space, no redundant work

• Dense: use boolean flags to indicate if the vertices are in the frontier
• Better cache locality, easy to maintain

0 2 4 5 7

0 1 2 3 4 5 6 7

T F T F T T F T

Sparse Dense

Pack the vertices in frontier Mark the vertices in frontier as true
64

Bucket fusion optimization

• Motivated by GraphIt [ZBC+20]

• If the work in one round is not sufficient, explore multi-hop neighbors
instead of one-hop neighbors

• Reduce synchronization costs
• Critical for large-diameter graphs (e.g., road networks and grid graphs)

One-hop neighbors Two-hop neighbors
65

Experiments

69

Set up

• A 96-core quad-socket machine (192 hyperthreads)
• 1.5TB main memory and 36MB*4 L3 cache

• C++ codes compiled with g++ 7.5.0 using CilkPlus with -O3 flag

70

Set up

https://github.com/ucrparlay/parallel-sssp

• 7 graphs tested:
• 5 social and web graphs (scale-free networks): com-orkut (OK), Livejournal (LJ),

Twitter (TW), Friendster (FT), and Webgraph (WB)
• 2 road graphs: RoadUSA (USA), Germany (GE)
• 3 to 89 million vertices, 32 million to 3.6 billion edges
• Scale-free networks use uniformly distributed edge weight [1, 218]
• Road network has edge weight provided in the dataset

• 7 implementations tested:
• 𝚫-stepping: GAPBS [BAP15, ZYB+20], Galois [NLP13], Julienne [DBS17], ours (PQ-𝚫)
• Bellman-Ford: Ligra [SB13], ours (PQ-BF)
• 𝝆-stepping: ours (PQ-𝝆)

• Our code is publicly available
• https://github.com/ucrparlay/parallel-sssp

71

https://github.com/ucrparlay/parallel-sssp

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16

Heatmap: parallel running time relative to fastest on
each graph

For all Δ-stepping we use the best Δ. PQ-𝜌-best uses best 𝜌, and PQ-𝜌-fix uses a fixed value of 𝜌

for scale-free networks, and road graphs, respectively

(scale-free networks)

*: ours

72

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16

Our implementations are always the fastest

(scale-free networks)

For all Δ-stepping we use the best Δ. PQ-𝜌-best uses best 𝜌, and PQ-𝜌-fix uses a fixed value of 𝜌

for scale-free networks, and road graphs, respectively

*: ours

73

Scale-free networks: 𝝆-stepping is faster than all
existing code by at least 40%

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16

*: ours

76

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

𝚫
-s

te
p

.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64

𝝆
-s

te
p

.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16

*: ours

Our 𝚫-stepping is fastest on road graphs, and our 𝝆-
stepping is competitive

77

Number of visit (enqueue) per vertex

78

With careful coding, Bellman-Ford is already close to
optimal on scale-free networks (2.5 #enqueue per vertex)

79

𝝆-stepping is almost optimal (very close to 1)

Small graphs, act

like Bellman-Ford

Directed graph,

some vertices not

reachable

80

Room for improvement for road graphs
(but these graphs are relatively small)

81

Vertices visited per step

Friendster Twitter Road-USA

82

𝝆-stepping: sufficient but minimal work to saturate all
processors, independent with graph properties

Road-USAFriendster Twitter

83

𝝆-stepping: can be too eager for large diameter graphs

Friendster Twitter Road-USA

84

Varying 𝚫 and varying 𝝆

FT USATW 𝜌-stepping

Δ-stepping

85

Other experiments

• More experimental results
• difference source vertices

• different machine

• Average #visits per edge

• given in the full version of this paper

86

Summary

91

Our approach

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

92

Our results: theoretical analysis

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New or improved work-span bounds

93

Our results: efficient implementations

New ADT: Lazy-Batched Priority Queue (Lab-PQ)

Tournament-tree-based Array-based

New algorithm:

𝜌-stepping

Δ*-stepping

New framework: stepping algorithm framework

Existing algorithms:

Dijkstra
Bellman-

Ford

Radius-

stepping

Δ-

stepping

New unified implementations

94

New algorithm: 𝝆-stepping and 𝚫*-stepping

• Extremely simple on top of the LaB-PQ
• Just use an array

• Good theoretical guarantee: similar to Radius-Stepping

• Avoid sub-steps in 𝚫-stepping and Radius-Stepping

• 𝝆-stepping
• Insensitive to the value of 𝝆
• Especially good on scale-free networks

• 𝚫*-stepping
• Simply remove the FinishCheck in 𝚫-stepping
• Especially good on road networks

95

• Full version: https://arxiv.org/abs/2105.06145

• Code: https://github.com/ucrparlay/Parallel-SSSP

• Contact: Xiaojun Dong (xdong038@ucr.edu)
98

https://arxiv.org/abs/2105.06145
https://arxiv.org/abs/2105.06145
https://arxiv.org/abs/2105.06145
https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP
http://xdong038@ucr.edu

	Default Section
	幻灯片 1: Efficient algorithms and implementations for parallel SSSP
	幻灯片 2: Models and Background
	幻灯片 3: Single-source shortest paths (SSSP)
	幻灯片 4: SSSP is notoriously hard in parallel
	幻灯片 5: Practical implementations: 粗体 大写 Delta-stepping
	幻灯片 6: Practical implementations: 粗体 大写 Delta-stepping
	幻灯片 7: Practical implementations: 粗体 大写 Delta-stepping
	幻灯片 8: Practical implementations: 粗体 大写 Delta-stepping
	幻灯片 9: Practical implementations: 粗体 大写 Delta-stepping
	幻灯片 10: Practical implementations: 粗体 大写 Delta-stepping
	幻灯片 11: 粗体 大写 Delta-stepping: challenges
	幻灯片 12: 粗体 大写 Delta-stepping and 粗体 大写 Delta
	幻灯片 13: 粗体 大写 Delta-stepping and 粗体 大写 Delta
	幻灯片 14: 粗体 大写 Delta-stepping and 粗体 大写 Delta
	幻灯片 15: 粗体 大写 Delta-stepping and 粗体 大写 Delta
	幻灯片 16: SSSP is notoriously hard in parallel
	幻灯片 17: Theoretical parallel SSSP algorithms
	幻灯片 19: SSSP is notoriously hard in parallel
	幻灯片 21: Parallel / concurrent priority queues for SSSP
	幻灯片 22: SSSP is notoriously hard in parallel
	幻灯片 23: We want to have parallel SSSP with …
	幻灯片 24: Our new SSSP solutions
	幻灯片 26: Our approach
	幻灯片 27: Our approach
	幻灯片 28: Our approach
	幻灯片 29: Our approach
	幻灯片 30: Our approach
	幻灯片 31: Our results: New or improved bounds
	幻灯片 32: Our results: Efficient implmentations
	幻灯片 33: Stepping algorithm framework
	幻灯片 35: SSSP is notoriously hard in parallel
	幻灯片 36: High-level similarities
	幻灯片 37: Stepping algorithm framework
	幻灯片 38: Stepping algorithm framework
	幻灯片 39: Stepping algorithm framework
	幻灯片 40: Our ADT and data structure
	幻灯片 41: Motivated by the “batch-dynamic” setting
	幻灯片 43: What operations needed for the stepping algorithms?
	幻灯片 45: Lab-PQ Interface
	幻灯片 47: A theoretically-efficient implementation
	幻灯片 48: A theoretically-efficient implementation
	幻灯片 49: A theoretically-efficient implementation
	幻灯片 50: A theoretically-efficient implementation
	幻灯片 51: Theoretical analysis
	幻灯片 52: Theoretical analysis based on 左圆括号 加粗斜体 k ,加粗斜体 Rho 右圆括号 graph
	幻灯片 53: Theoretical analysis based on 左圆括号 加粗斜体 k ,加粗斜体 Rho 右圆括号 graph
	幻灯片 54: 加粗斜体 k 减 加粗斜体 Rho properties for real-world graphs
	幻灯片 55: Theoretical results
	幻灯片 56: Theoretical results
	幻灯片 57: Implementation details
	幻灯片 58: Recall that we implement many stepping algorithms
	幻灯片 59: A practically-efficient implementation for LaB-PQ
	幻灯片 64: Sparse/Dense optimization
	幻灯片 65: Bucket fusion optimization
	幻灯片 69: Experiments
	幻灯片 70: Set up
	幻灯片 71: Set up
	幻灯片 72: Heatmap: parallel running time relative to fastest on each graph
	幻灯片 73: Our implementations are always the fastest
	幻灯片 76: Scale-free networks: 加粗斜体 Rho-stepping is faster than all existing code by at least 40%
	幻灯片 77: Our 粗体 大写 Delta-stepping is fastest on road graphs, and our 加粗斜体 Rho-stepping is competitive
	幻灯片 78: Number of visit (enqueue) per vertex
	幻灯片 79: With careful coding, Bellman-Ford is already close to optimal on scale-free networks (2.5 #enqueue per vertex)
	幻灯片 80: 加粗斜体 Rho-stepping is almost optimal (very close to 1)
	幻灯片 81: Room for improvement for road graphs (but these graphs are relatively small)
	幻灯片 82: Vertices visited per step
	幻灯片 83: 加粗斜体 Rho-stepping: sufficient but minimal work to saturate all processors, independent with graph properties
	幻灯片 84: 加粗斜体 Rho-stepping: can be too eager for large diameter graphs
	幻灯片 85: Varying 粗体 大写 Delta and varying 加粗斜体 Rho
	幻灯片 86: Other experiments
	幻灯片 91: Summary
	幻灯片 92: Our approach
	幻灯片 93: Our results: theoretical analysis
	幻灯片 94: Our results: efficient implementations
	幻灯片 95: New algorithm: 加粗斜体 Rho-stepping and 粗体 大写 Delta*-stepping
	幻灯片 98

