Efficient algorithms and implementations for parallel SSSP

<u>Xiaojun Dong¹</u>, Yan Gu¹, Yihan Sun¹ and Yunming Zhang²

¹ University of California, Riverside

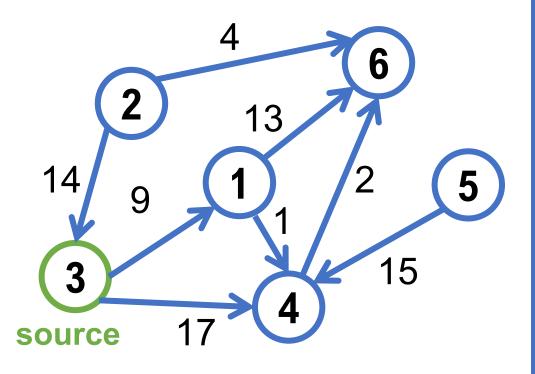
² Massachusetts Institute of Technology

Models and Background

- Shared-memory multi-core setting
- Work-span model
- Work: total number of operations (sequential running time)
- Span (depth): longest dependence chain (parallel time)
- \bullet We'll see both theoretical analysis and experimental results in this talk $\textcircled{\sc o}$

Single-source shortest paths (SSSP)

- On graph G = (V, E, w), with edge weight function $w: e \mapsto \mathbb{R}^+$ and a source $s \in V$, compute the shortest distances (paths) of all other vertices to s. Let n = |V|, m = |E|.
- Dijkstra's algorithm + priority queue
 - Work efficient: process each vertex/edge once
 - But hard to parallelize?
- Bellman-Ford
 - Redundant work: process multiple times
 - But parallelism is straightforward



SSSP is notoriously hard in parallel

Theoretical algorithms: [BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], [Meyer02], [SS99], [Spencer97], [UY91] Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

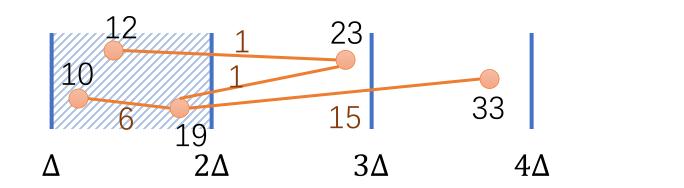
Practical implementations are based on Δ-stepping [Meyer-Sanders 03]: Julienne [DBS17], GAPBS [BAP15], Galois [NLP13], Graphlt [ZBC+20] Other platforms: [BPG+17], [DBG + 14], [MAB+10], [ZCZM16], [WDY+16] Parallel / concurrent priority queues: PRAM [BDM+96], [CH94], [CDP96], [DPS96], [RCP+94] Concurrent: [AKLS15], [CMH14], [HKP+13], [LJ13], [LS12], [SL20], [ST05], [ZMS19] Others: [BKS15], [Sanders98]

• Relax those close to the source, but multiple of them together in parallel

For each step

While there remain potential unsettled vertices For each outgoing edge

Relax the neighbor

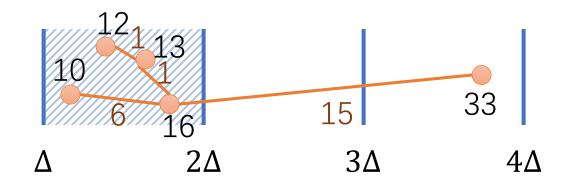


• Relax those close to the source, but multiple of them together in parallel

For each step

While there remain potential unsettled vertices For each outgoing edge

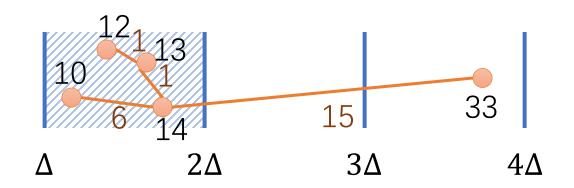
Relax the neighbor



• Relax those close to the source, but multiple of them together in parallel

For each step

While there remain potential unsettled vertices For each outgoing edge Relax the neighbor



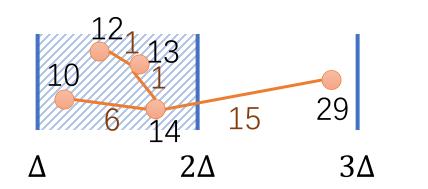
Relax those close to the source, but multiple of them together in parallel

For each step

While there remain potential unsettled vertices For each outgoing edge

 4Λ

Relax the neighbor



• Relax those close to the source, but multiple of them together in parallel

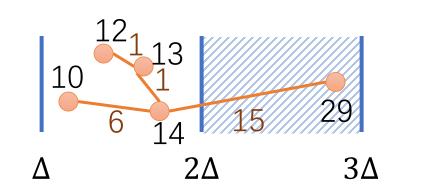
For each step

While there remain potential unsettled vertices

4Δ

For each outgoing edge

Relax the neighbor



- Relax those close to the source, but multiple of them together in parallel
 - Edges crossing boundary: Dijkstra
 - Edges within a single range: Bellman-Ford
 - Try to avoid redundant work (not relaxing vertices far away), but support parallelism

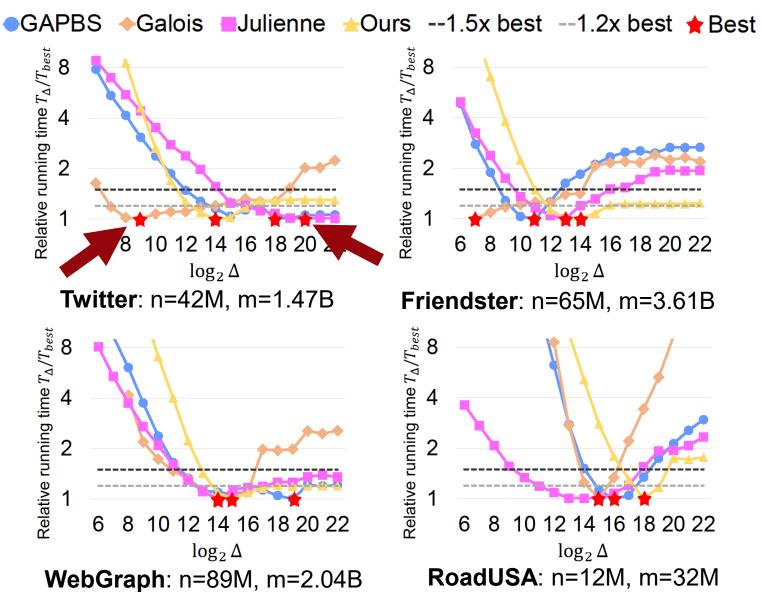


Δ-stepping: challenges

• In theory, no known bounds for general graphs

- Has been analyzed on random graphs
- The span can be as larger as O(n) with a shallow shortest-path tree

• In practice, how to select the best Δ ?

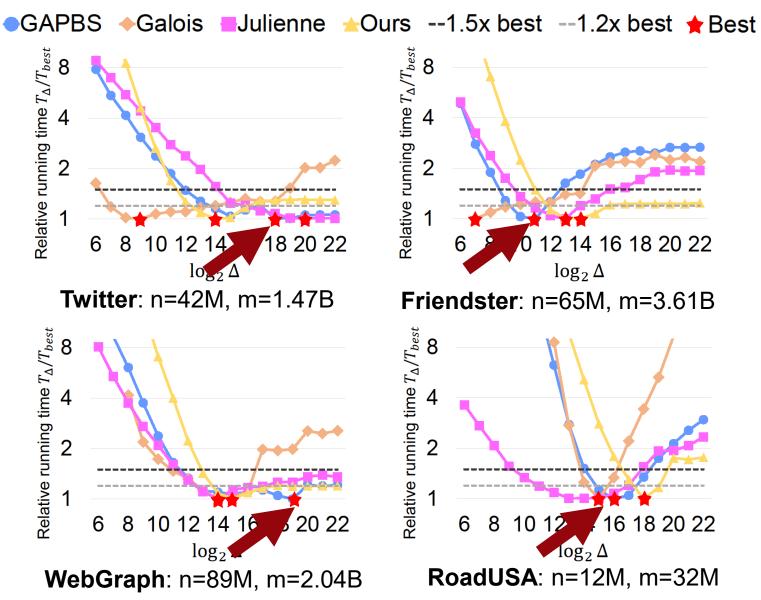


• (Relative running time)

Same graph:

- In each of the figure
- Compare the red stars for all curves

- $\begin{array}{c} \bullet \ \text{Best}\ \Delta \ \text{varies for different} \\ implementations \end{array}$
- 2¹¹ on Twitter!

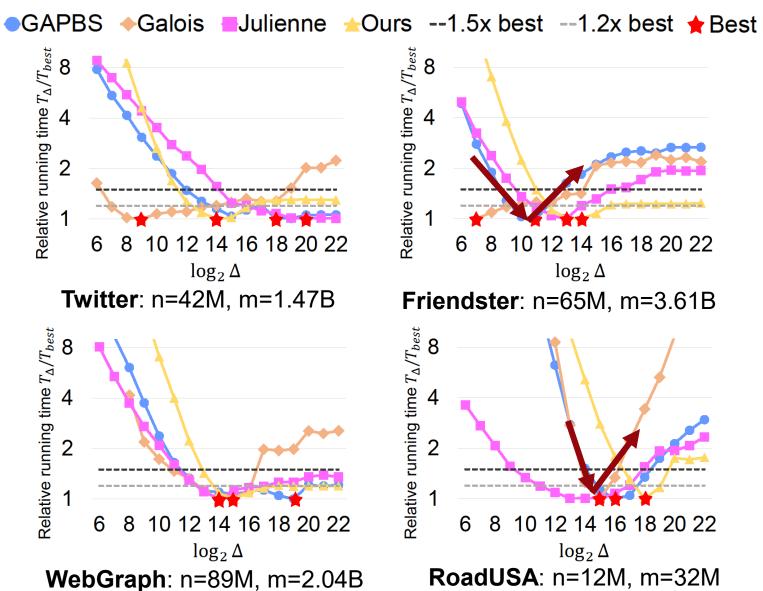


• (Relative running time)

Same Implementation:

- For four figures
- Compare the red stars of the curves with the same color

- Best ∆ varies for different graphs
 - 2⁹ for GAPBS!
 - First three graphs has the same edge-weight distribution

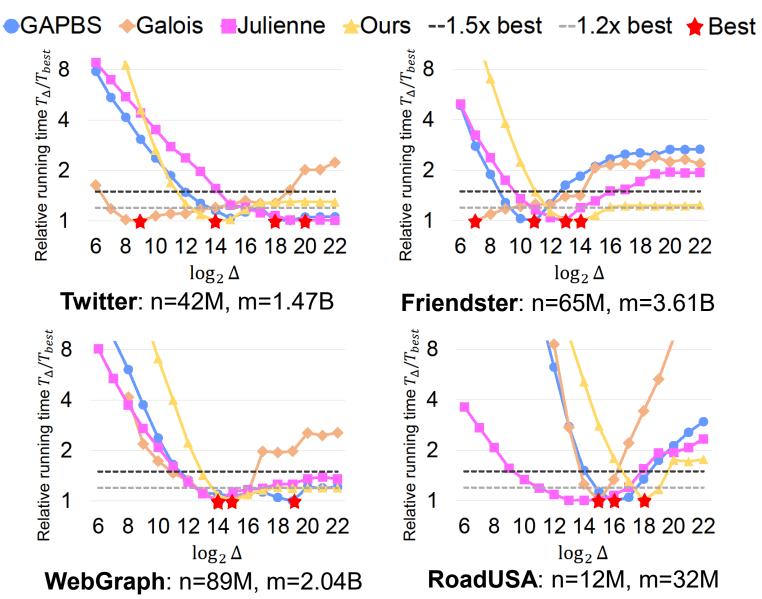


• (Relative running time)

Same graph & same implementation

• Each curve

- Sensitive to the value of Δ



• (Relative running time)

Usually have to first exhaustively search for the best Δ for each graph-implementation

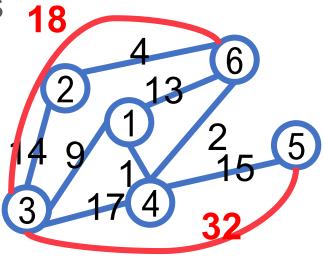
SSSP is notoriously hard in parallel

Theoretical algorithms: [BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], [Meyer02], [SS99], [Spencer97], [UY91] Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No interesting **Parallel / concurrent priority Practical implementations are** worst-case queues: based on Δ -stepping [Meyerbounds **PRAM** [BDM⁺96], [CH94], [CDP96], Sanders 03]: [DPS96], [RCP⁺94] Julienne [DBS17], GAPBS [BAP15], Needs tunning Concurrent: [AKLS15], [CMH14], Galois [NLP13], Graphlt [ZBC⁺20] for parameter [HKP⁺13], [LJ13], [LS12], [SL20], [ST05], **Other platforms:** [BPG⁺17], [DBG⁺ [ZMS19] 14], [MAB⁺10], [ZCZM16], [WDY⁺16] **Others:** [BKS15], [Sanders98]

Theoretical parallel SSSP algorithms

- Work-span tradeoff ("transitive closure bottleneck" [KR90])
 - No known exact solution enables small work and span simultaneously
 - Low span is hard ... consider a chain
 - Usually needs preprocessing
- No known implementation (or slower than Δ -stepping)
- Need a lot shortcuts: to achieve ${\it O}(n^{1-\epsilon})$ span requires , $\Omega(n^{1+\epsilon})$ shortcuts
 - Shortcuts increase *m*, which means more work!



SSSP is notoriously hard in parallel

Theoretical algorithms: [BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], [Meyer02], [SS99], [Spencer97], [UY91] Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are based on Δ-stepping [Meyer-Sanders 03]: Julienne [DBS17], GAPBS [BAP15], Galois [NLP13], Graphlt [ZBC+20] Other platforms: [BPG+17], [DBG+ 14], [MAB+10], [ZCZM16], [WDY+16] No interesting worst-case bounds

Needs tunning for parameter

Parallel / concurrent priority queues: PRAM [BDM⁺96], [CH94], [CDP96], [DPS96], [RCP⁺94] Concurrent: [AKLS15], [CMH14], [HKP⁺13], [LJ13], [LS12], [SL20], [ST05], [ZMS19] Others: [BKS15], [Sanders98]

Parallel / concurrent priority queues for SSSP

- Parallelize or support concurrent operations in Dijkstra's algorithm
 - Enable multiple updates (decreaseKey)
 - Later work allows multiple extractMin (approximately)

However, Dijkstra's algorithm itself is very sequential

- No interesting span bounds
- Slow in practice

SSSP is notoriously hard in parallel

Theoretical algorithms: [BGST16], [Cohen97], [Cohen00], [KS97], [Meyer01], [Meyer02], [SS99], [Spencer97], [UY91] Approximate: [ASZ20], [CFR20], [EN19], [Li20], [MPVX15]

No implementations

Practical implementations are based on Δ-stepping [Meyer-Sanders 03]: Julienne [DBS17], GAPBS [BAP15], Galois [NLP13], Graphlt [ZBC+20] Other platforms: [BPG+17], [DBG + 14], [MAB+10], [ZCZM16], [WDY+16]

No worstcase bounds

Needs tunning Parallel / concurrent priority queues: PRAM [BDM⁺96], [CH94], [CDP96], [DPS96], [RCP⁺94] Concurrent: [AKLS15], [CMH14], [HKP⁺13], [LJ13], [LS12], [SL20], [ST05], [ZMS19] Others: [BKS15], [Sanders98]

No good span (based on Dijkstra) Not as fast as Δstepping

We want to have parallel SSSP with ...

Theoretical Efficiency

Practicality

Good abstraction and easy implementation

Our new SSSP solutions

Theoretical Efficiency

Worst-case work and span bounds, matching previous bounds (under assumptions) Avoid shortcuts

Practicality

Competitive or faster than all existing software Stable and parameterinsensitive performance

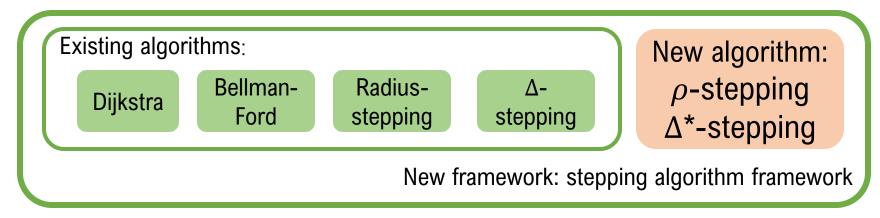
New priority queue ADT

Simple algorithms on top Efficient cost bounds Efficient implementation for multiple algorithms

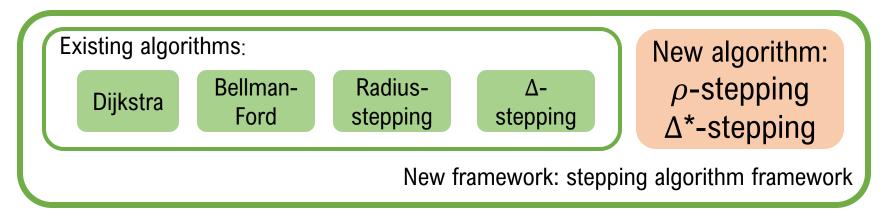
New framework: stepping algorithm framework

New algorithm: ρ -stepping and Δ^* -stepping

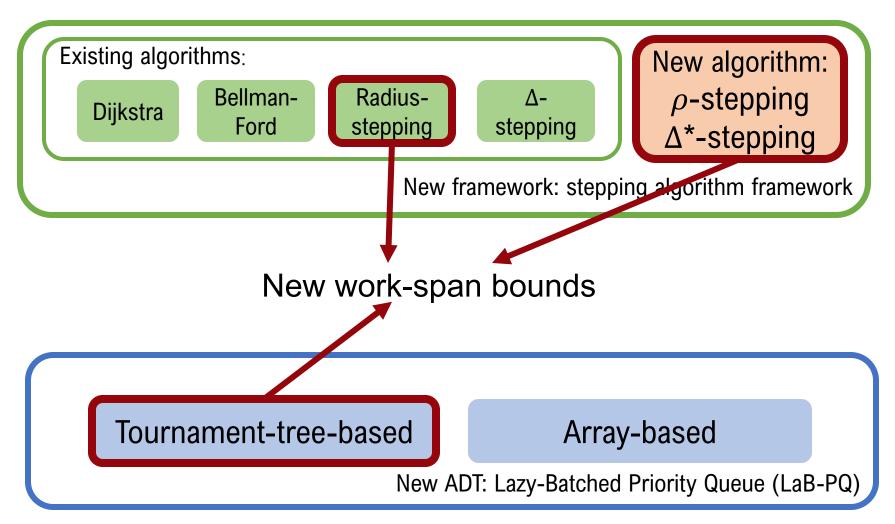




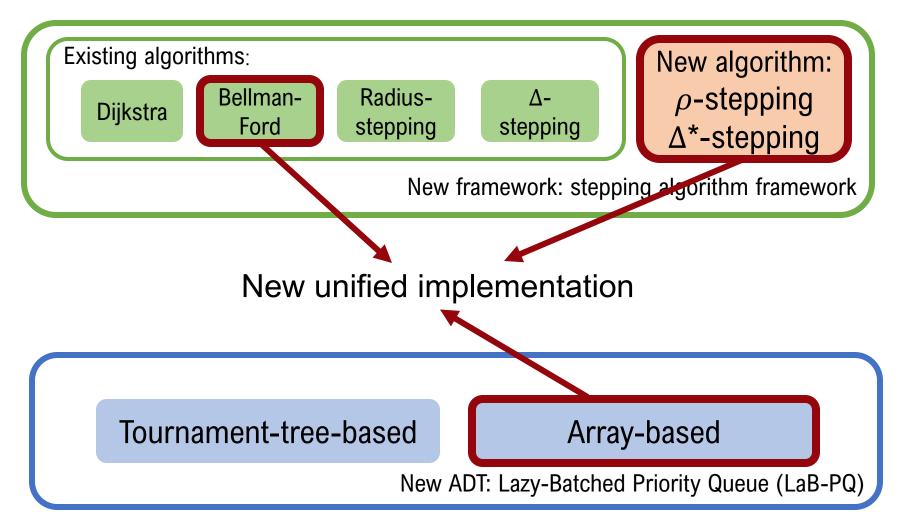
New ADT: Lazy-Batched Priority Queue (LaB-PQ)



Our results: New or improved bounds



Our results: Efficient implmentations



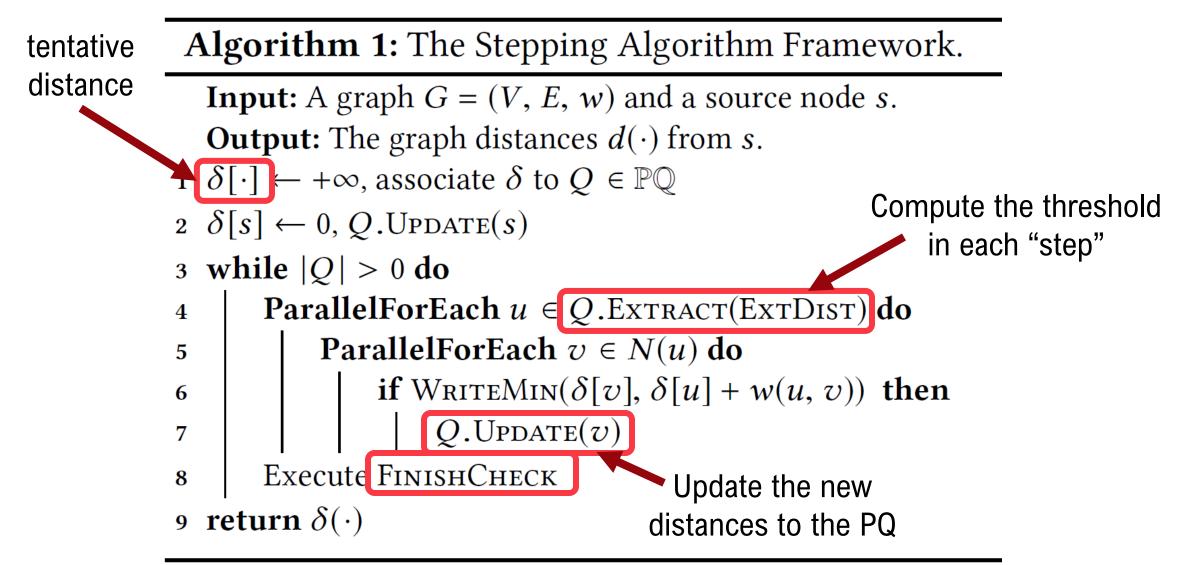
SSSP is notoriously hard in parallel

Radius stepping: BGST16

∆-stepping (also some based on Bellman-Ford)

High-level similarities

- Extract a subset of the vertices in the frontier and relax their neighbors
 - Vertices with distances under a certain threshold
- Repeat until all vertices are settled



Dealing with substeps: if a step does not finish, rerun

Algorithm	ExtDist	FinishCheck
Dijkstra [48]	$\theta \leftarrow \min_{v \in Q}(\delta[v])$	-
Bellman-Ford [13, 52]	$\theta \leftarrow +\infty$	-
Δ -Stepping [70]	$\theta \leftarrow i\Delta$	if no new $\delta[v] < i\Delta, i \leftarrow i + 1$
Δ^* -Stepping (new)	$\theta \leftarrow i\Delta$	-
Radius-Stepping [26]	$\theta \leftarrow \min_{v \in Q} (\delta[v] + r_{\rho}(v))$	if there exists $\delta[v] < \theta$, do not recompute ExtDist
ho-Stepping (new)	$\theta \leftarrow \rho$ -th smallest $\delta[v]$ in Q	-

Algorithm 1: The Stepping Algorithm Framework.

Input: A graph G = (V, E, w) and a source node *s*. **Output:** The graph distances $d(\cdot)$ from *s*.

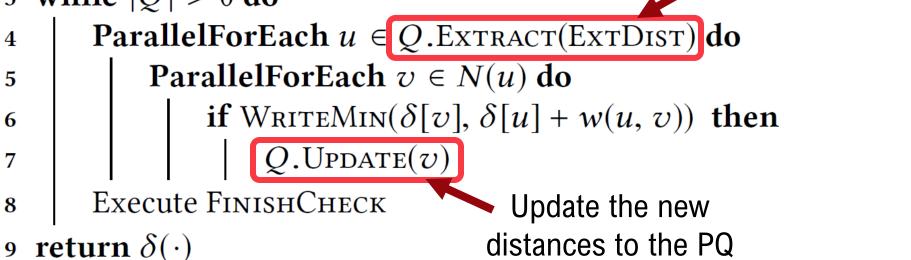
1
$$\delta[\cdot] \leftarrow +\infty$$
, associate δ to $Q \in \mathbb{PQ}$

2
$$\delta[s] \leftarrow 0, Q.UPDATE(s)$$

3 while |Q| > 0 do

Compute the threshold

in each "step"



Our ADT and data structure

Motivated by the "batch-dynamic" setting

- The batch-dynamic data structures take a batch (bulk) of updates or queries and execute them in parallel
 - Can usually design efficient parallel algorithms with low work and span
 - Some examples: hashtables [SB14], search trees [BFS16, BFS18], binary heap [WYGS20], dynamic Euler-tour [TDB19], rake-compress trees [AABD'19]

What operations needed for the stepping algorithms?

- Update a vertex's state in the priority queue (insert/decrease-key)
- Extract all vertices with keys below a certain threshold

Lab-PQ Interface

Update: commit an update to the data structure

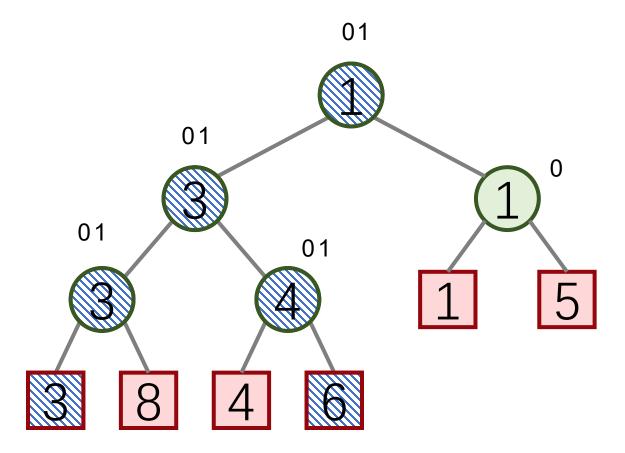
but not execute immediately

• Extract: report and delete a batch of elements

• First apply all previous changes in parallel

Use a tournament tree

• Since all entries are leaf nodes, dealing with concurrency issues is much easier

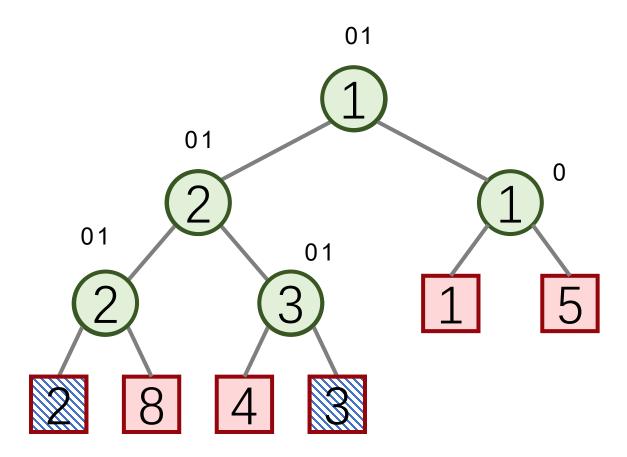


Update()

- Mark a bit for the path from the leaf to root when update
- When updates are in parallel, use test-and-set
- Only continue when test-and-set succeed

Use a tournament tree

• Since all entries are leaf nodes, dealing with concurrency issues is much easier

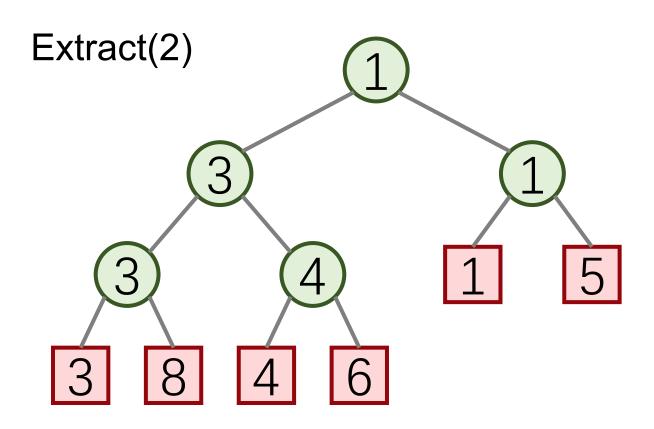


Apply all modification

- Apply the batch using divideand-conquer
- Skip a subtree if not marked
- Otherwise deal with two subtrees in parallel

Use a tournament tree

• Since all entries are leaf nodes, dealing with concurrency issues is much easier

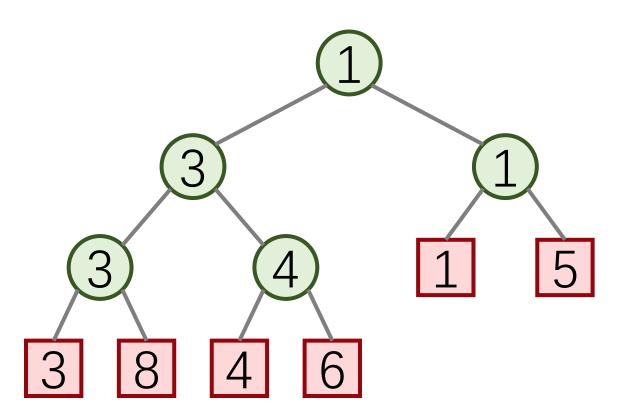


$Extract(\theta)$

- Extract everything $\leq \theta$
- Skip a subtree with key $> \theta$
- Update internal keys and remove marks

Use a tournament tree

• Since all entries are leaf nodes, dealing with concurrency issues is much easier



- If *b* leaves are involved in this batch, in total $O\left(b\log\frac{n}{b}\right)$ nodes are visited
- Each is visited a constant number of times

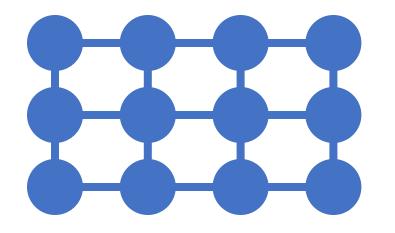
Theoretical analysis

Theoretical analysis based on (k, ρ) graph

- Without shortcut, it seems hard to show any span bounds o(n) for general graphs ...
- Consider some graph invariants?
 - $\tilde{O}(n)$ span bound for Bellman-Ford should be understood as $\tilde{O}(d)$, where d is the shortest path tree depth
- (k, ρ)-graph [BGST'16]: each vertex can reach its ρ closest vertices in k hops

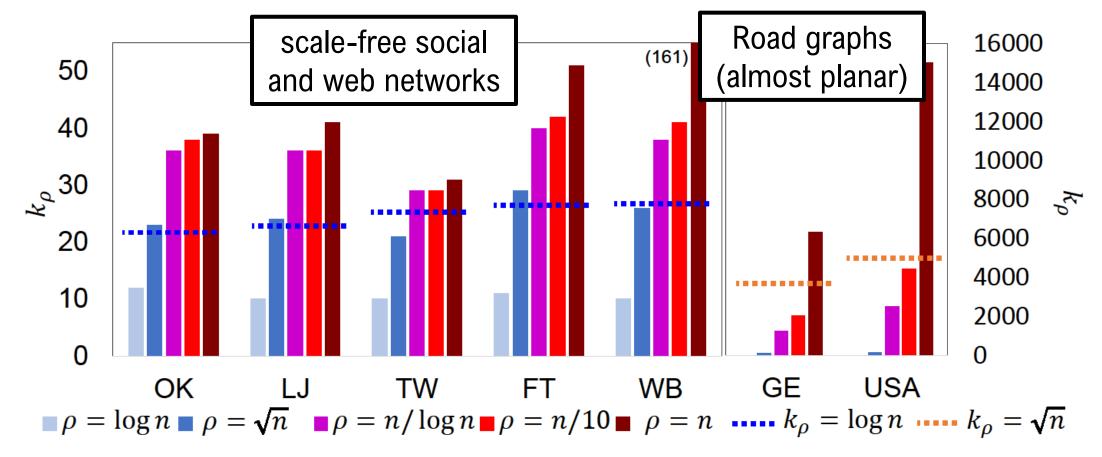
Theoretical analysis based on (k, ρ) graph

- (k, ρ)-graph [BGST'16]: each vertex can reach its ρ closest vertices in k hops
 - Fix ρ , use k_{ρ} as the smallest k to make a graph a (k, ρ) -graph
 - k_n is the shortest path tree depth
 - What are the values of k_{ρ} for real-world graphs?



(1,3)-graph $k_3 = 1$ (2,4)-graph $k_4 = 2$ (2,6)-graph $k_6 = 2$

$k - \rho$ properties for real-world graphs



- Number of vertices around 10^6 to 10^8
- For scale-free networks, $k_
 ho$ is usually small. $O(\log n)$ even for large ho
- For road graphs, $k_
 ho$ varies significantly with ho

Theoretical results

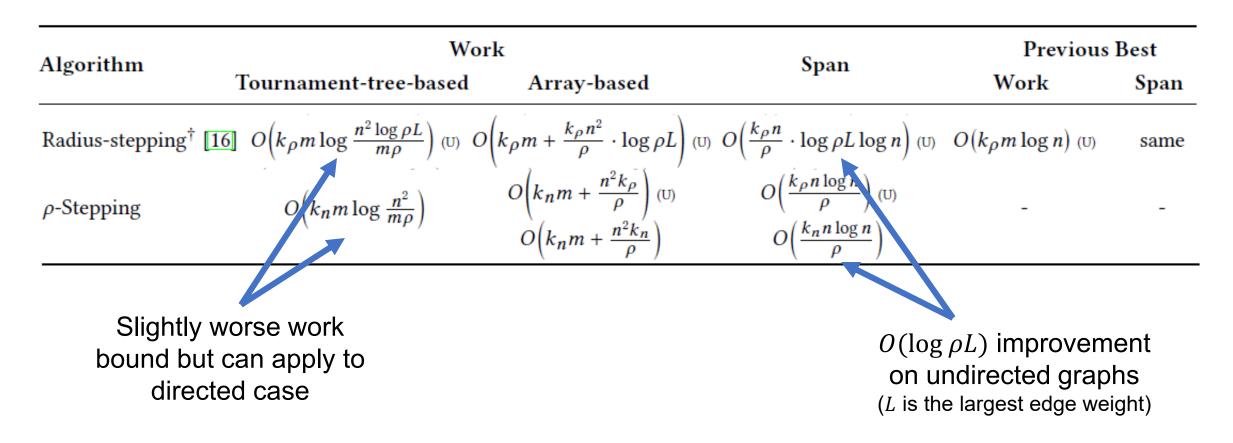
• Extraction lemma, distribution lemma, data structure costs

Algorithm	Wo	ork	Snon	Previous Best		
Algorithm	Tournament-tree-based	Array-based	Span	Work	Span	
Dijkstra [17] 31]	$O\left(m\log\frac{n^2}{m}\right)$	$O(m + n^2)$	$O(n \log n)$	$O(m \log n)$	same	
Bellman-Ford [10, 33	$O(k_n m)$	$O(k_n m)$	$O(k_n \log n)$	same	same	
Δ^* -stepping	$O\left(k_n m \log \frac{nL}{m\Delta}\right)$	$O\left(k_nm + \frac{k_nn(\Delta+L)}{\Delta}\right)$	$O\left(\left(\frac{k_n(\Delta+L)}{\Delta}\right)\log n\right)$	-	-	
Radius-stepping [†] [16	$O\left(k_{ ho}m\log\frac{n^{2}\log\rho L}{m ho} ight)$ (U)	$O\left(k_{\rho}m + \frac{k_{\rho}n^2}{\rho} \cdot \log \rho L\right)$ (U)	$O\left(\frac{k_{\rho}n}{\rho} \cdot \log \rho L \log n\right)$ (t	J) $O(k_{\rho}m\log n)$ (U)	same	
Shi-Spencer [†] [58]	$O\Big((m+n\rho)\log\frac{n^2}{m+n\rho}\Big)$ (U)	$O\left(m+n\rho+\frac{n^2}{\rho}\right)$ (U)	$O\left(\frac{n\log n}{\rho}\right)$ (U)	$O((m + n\rho)\log n)$ (U)	same	
ρ -Stepping	$O\left(k_n m \log \frac{n^2}{m\rho}\right)$	$O\left(k_n m + \frac{n^2 k_\rho}{\rho}\right) (U)$ $O\left(k_n m + \frac{n^2 k_n}{\rho}\right)$	$O\left(\frac{k_{\rho} n \log n}{\rho}\right) (U)$ $O\left(\frac{k_{n} n \log n}{\rho}\right)$	-	-	

Assume smallest edge weight is 1, L is the largest edge weight, (U) means the bound works only on undirected graphs

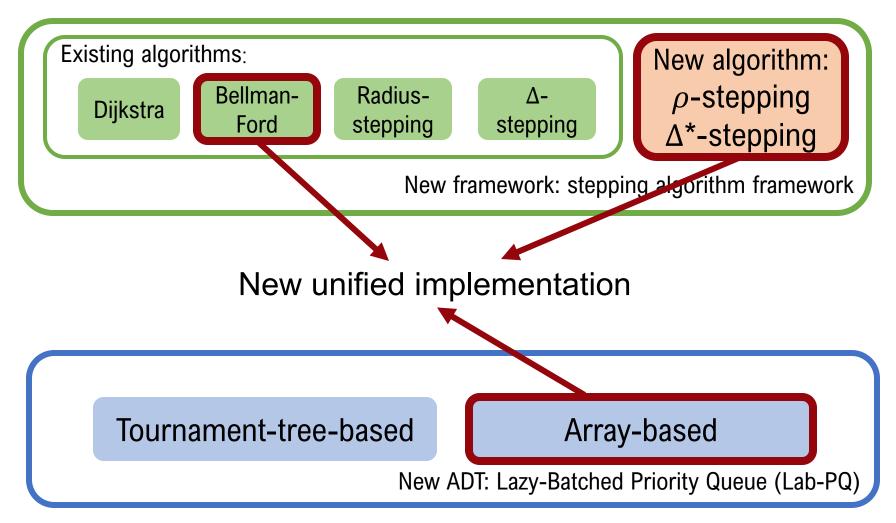
Theoretical results

• Extraction lemma, distribution lemma, data structure cost



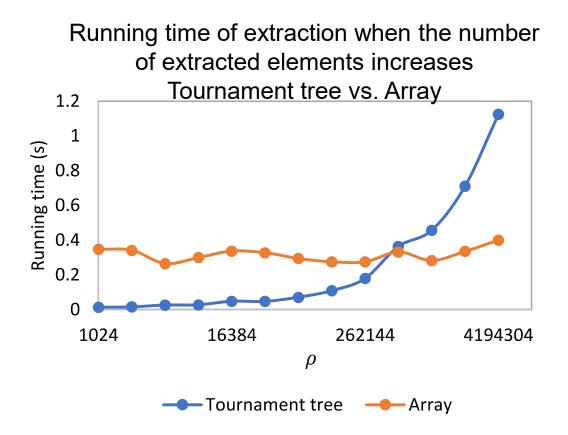
Implementation details

Recall that we implement many stepping algorithms



A practically-efficient implementation for LaB-PQ

- JUST USE AN ARRAY
- Cache-friendly
- Easy to implement



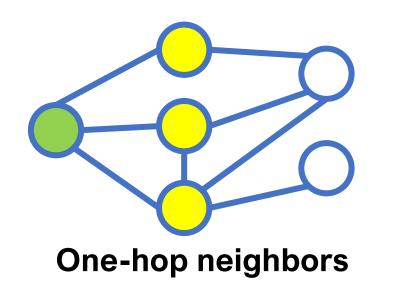
*We assume total #elements is 10⁸, which is approximately the size of real-world graphs

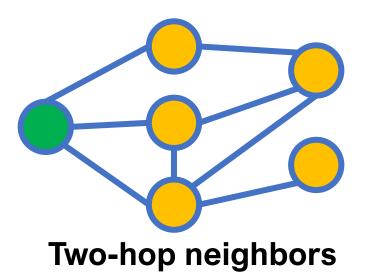
Sparse/Dense optimization

- Motivated by Ligra [SB13]
- Sparse: use an array to keep track of the vertices
 - Require less space, no redundant work
- Dense: use boolean flags to indicate if the vertices are in the frontier
 - Better cache locality, easy to maintain

Bucket fusion optimization

- Motivated by GraphIt [ZBC+20]
- If the work in one round is not sufficient, explore multi-hop neighbors instead of one-hop neighbors
- Reduce synchronization costs
 - Critical for large-diameter graphs (e.g., road networks and grid graphs)





Experiments

Set up

• A 96-core quad-socket machine (192 hyperthreads)

- 1.5TB main memory and 36MB*4 L3 cache
- C++ codes compiled with g++ 7.5.0 using CilkPlus with -O3 flag

Set up

• 7 graphs tested:

- 5 social and web graphs (scale-free networks): com-orkut (OK), Livejournal (LJ), Twitter (TW), Friendster (FT), and Webgraph (WB)
- 2 road graphs: RoadUSA (USA), Germany (GE)
- 3 to 89 million vertices, 32 million to 3.6 billion edges
- Scale-free networks use uniformly distributed edge weight [1, 2¹⁸]
- Road network has edge weight provided in the dataset
- 7 implementations tested:
 - Δ-stepping: GAPBS [BAP15, ZYB+20], Galois [NLP13], Julienne [DBS17], ours (PQ-Δ)
 - Bellman-Ford: Ligra [SB13], ours (PQ-BF)
 - ρ -stepping: ours (PQ- ρ)
- Our code is publicly available
 - <u>https://github.com/ucrparlay/parallel-sssp</u>

Heatmap: parallel running time relative to fastest on each graph (scale-free networks)

*			Road Graphs							
	*: ours	OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.
	GAPBS	1.96	1.29	2.61	1.46	1.81	1.83	1.22	1.30	1.26
Δ-step.	Julienne	2.18	1.75	1.96	1.36	1.92	1.83	36.74	39.6 1	38.18
Δ-S	Galois	1.58	1.42	1.33	1.37	1.36	1.41	1.22	1.14	1.18
	*PQ-Δ	1.00	1.03	1.15	1.26	1.19	1.13	1.00	1.00	1.00
BF	Ligra	2.02	1.45	1.67	2.53	2.01	1.93	_	_	_
•	*PQ-BF	1.09	1.19	1.28	1.34	1.60	1.30	1.69	1.60	1.64
	*PQ- <i>p</i> -fix	1.08	1.09	1.00	1.00	1.01	1.03	1.14	1.18	1.16
<i>p</i> -step.	*PQ- <i>ρ</i> -best	1.02	1.00	1.00	1.00	1.00	1.00	1.14	1.18	1.16

For all Δ -stepping we use the best Δ . PQ- ρ -best uses best ρ , and PQ- ρ -fix uses a fixed value of ρ for scale-free networks, and road graphs, respectively

Our implementations are always the fastest

(scale-free networks)											
	*	Social and Web Graphs							Road Graphs		
*: ours		OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.	
_	GAPBS	1.96	1.29	2.61	1.46	1.81	1.83	1.22	1.30	1.26	
Δ-step.	Julienne	2.18	1.75	1.96	1.36	1.92	1.83	36.74	39.6 1	38.18	
	Galois	1.58	1.42	1.33	1.37	1.36	1.41	1.22	1.14	1.18	
). BF	*PQ-Δ	1.00	1.03	1.15	1.26	1.19	1.13	1.00	1.00	1.00	
	Ligra	2.02	1.45	1.67	2.53	2.01	1.93	_	_	-	
	*PQ-BF	1.09	1.19	1.28	1.34	1.60	1.30	1.69	1.60	1.64	
	*PQ- <i>ρ</i> -fix	1.08	1.09	1.00	1.00	1.01	1.03	1.14	1.18	1.16	
S-d	*PQ- <i>ρ</i> -best	1.02	1.00	1.00	1.00	1.00	1.00	1.14	1.18	1.16	

For all Δ -stepping we use the best Δ . PQ- ρ -best uses best ρ , and PQ- ρ -fix uses a fixed value of ρ for scale-free networks, and road graphs, respectively

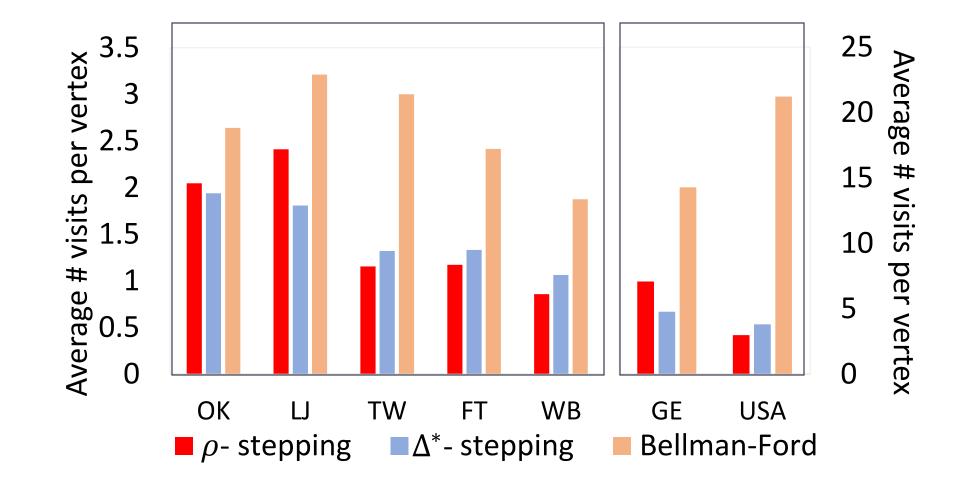
Scale-free networks: ρ -stepping is faster than all existing code by at least 40%

*: ours		Social and Web Graphs							Road Graphs		
	. ours	OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.	
•	GAPBS	1.96	1.29	2.61	1.46	1.81	1.83	1.22	1.30	1.26	
Δ-step.	Julienne	2.18	1.75	1.96	1.36	1.92	1.83	36.74	39.61	38.18	
Δ-s	Galois	1.58	1.42	1.33	1.37	1.36	1.41	1.22	1.14	1.18	
	*PQ-Δ	1.00	1.03	1.15	1.26	1.19	1.13	1.00	1.00	1.00	
BF	Ligra	2.02	1.45	1.67	2.53	2.01	1.93	_	_	-	
B	*PQ-BF	1.09	1.19	1.28	1.34	1.60	1.30	1.69	1.60	1.64	
o-step.	*PQ- <i>p</i> -fix	1.08	1.09	1.00	1.00	1.01	1.03	1.14	1.18	1.16	
p-s	*PQ- <i>ρ</i> -best	1.02	1.00	1.00	1.00	1.00	1.00	1.14	1.18	1.16	

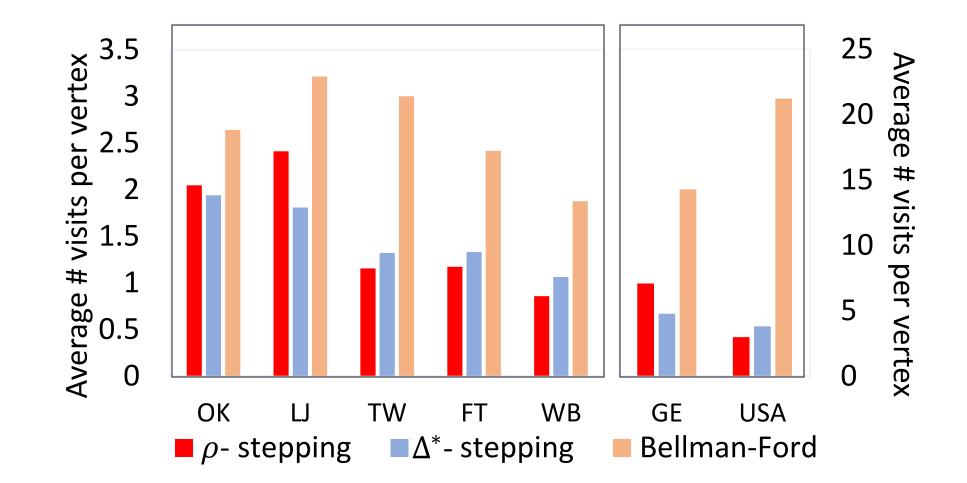
Our Δ -stepping is fastest on road graphs, and our ρ -stepping is competitive

*: ours		Social and Web Graphs							Road Graphs		
		OK	LJ	TW	FT	WB	Ave.	GE	USA	Ave.	
•	GAPBS	1.96	1.29	2.61	1.46	1.81	1.83	1.22	1.30	1.26	
Δ-step.	Julienne	2.18	1.75	1.96	1.36	1.92	1.83	36.74	39.61	38.18	
∆- S	Galois	1.58	1.42	1.33	1.37	1.36	1.41	1.22	1.14	1.18	
	*PQ-Δ	1.00	1.03	1.15	1.26	1.19	1.13	1.00	1.00	1.00	
<i>p</i> -step. BF	Ligra	2.02	1.45	1.67	2.53	2.01	1.93	_	-	-	
	*PQ-BF	1.09	1.19	1.28	1.34	1.60	1.30	1.69	1.60	1.64	
	*PQ- <i>p</i> -fix	1.08	1.09	1.00	1.00	1.01	1.03	1.14	1.18	1.16	
s-d	*PQ- <i>ρ</i> -best	1.02	1.00	1.00	1.00	1.00	1.00	1.14	1.18	1.16	

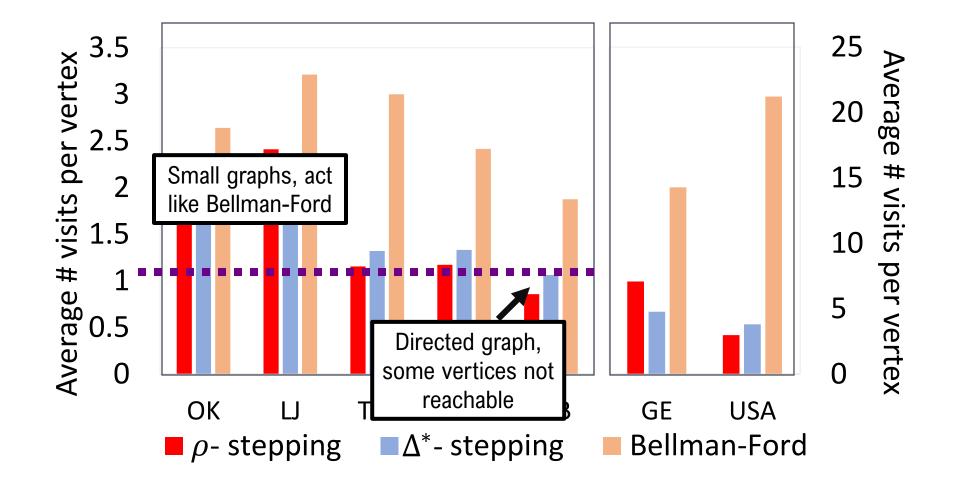
Number of visit (enqueue) per vertex



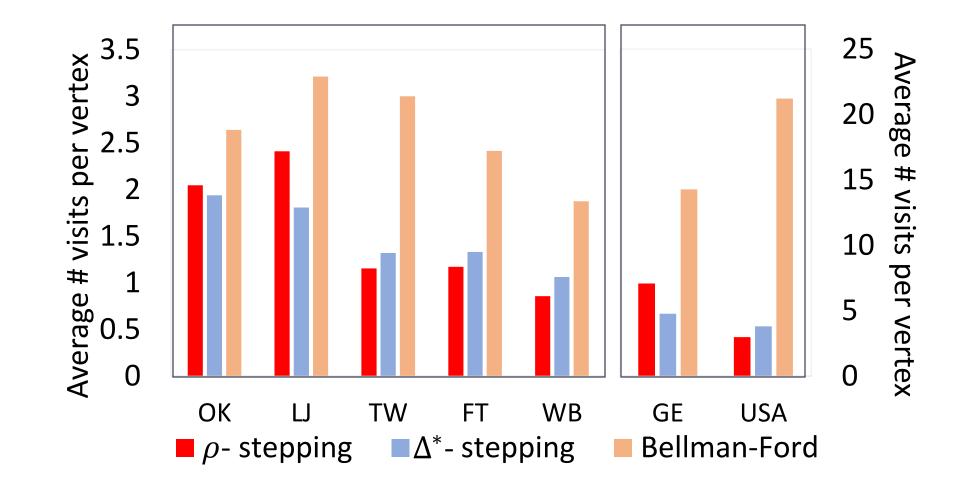
With careful coding, Bellman-Ford is already close to optimal on scale-free networks (2.5 #enqueue per vertex)



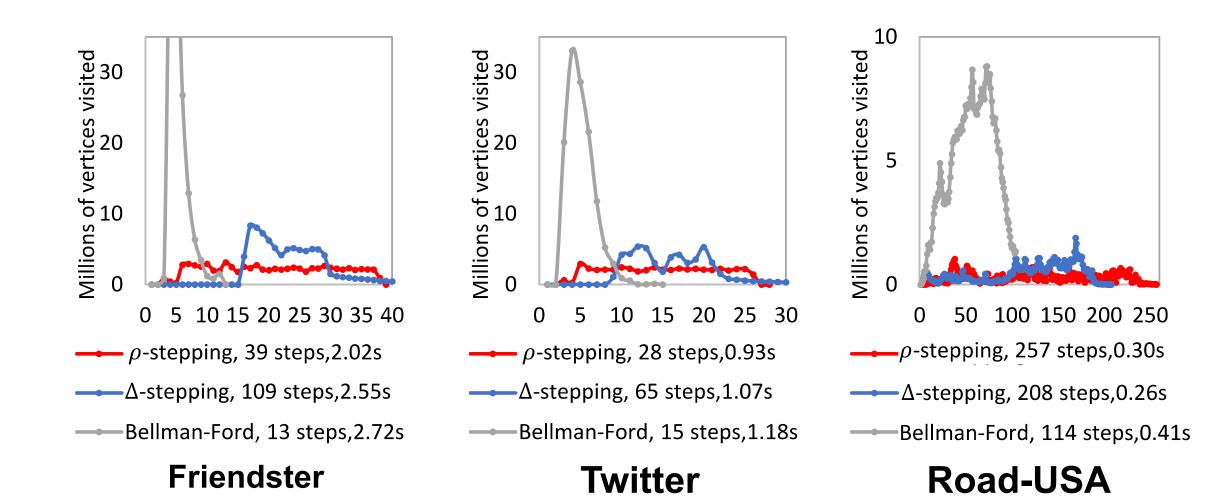
ρ -stepping is almost optimal (very close to 1)



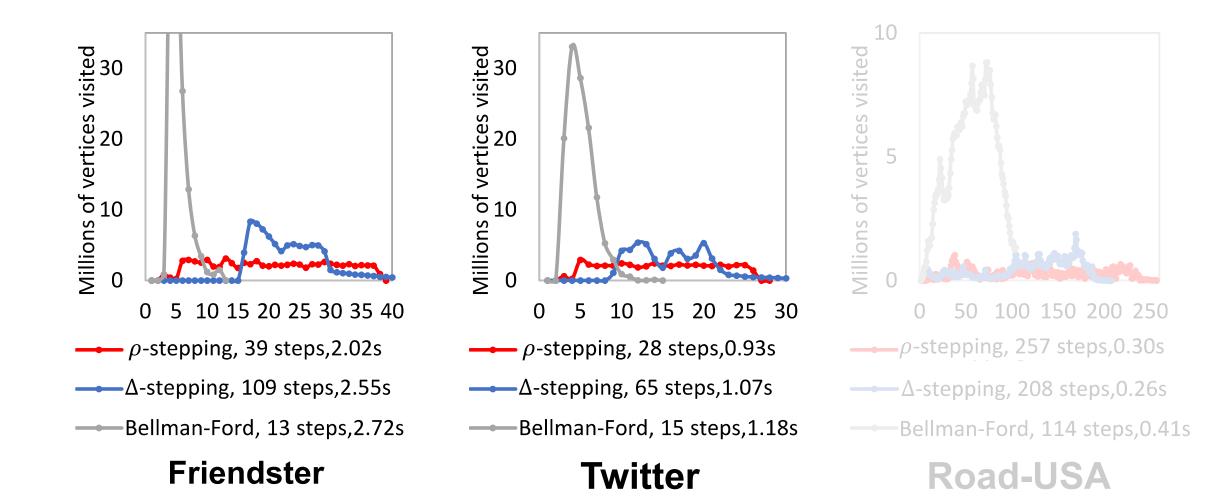
Room for improvement for road graphs (but these graphs are relatively small)



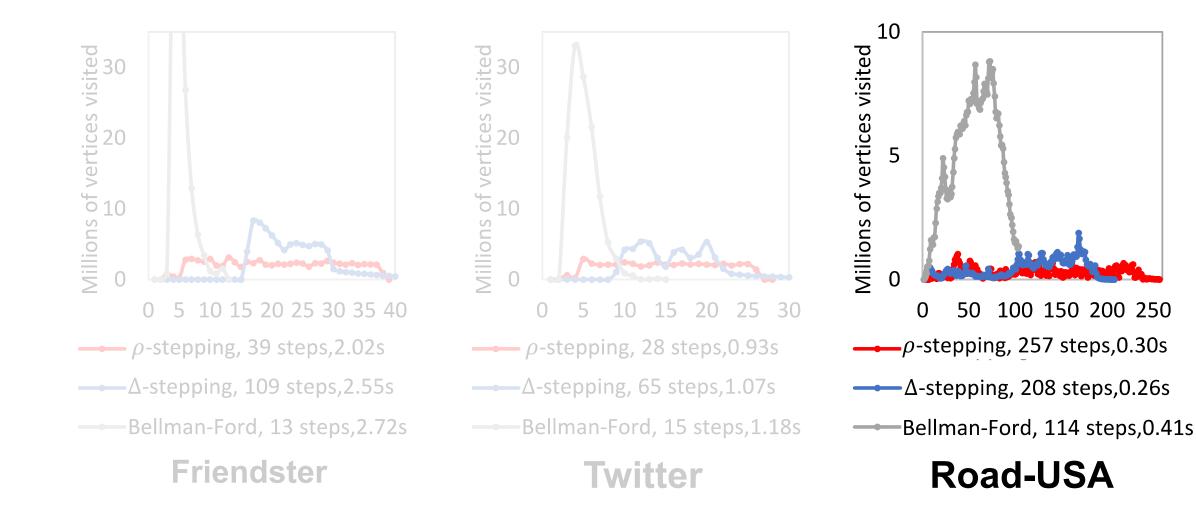
Vertices visited per step

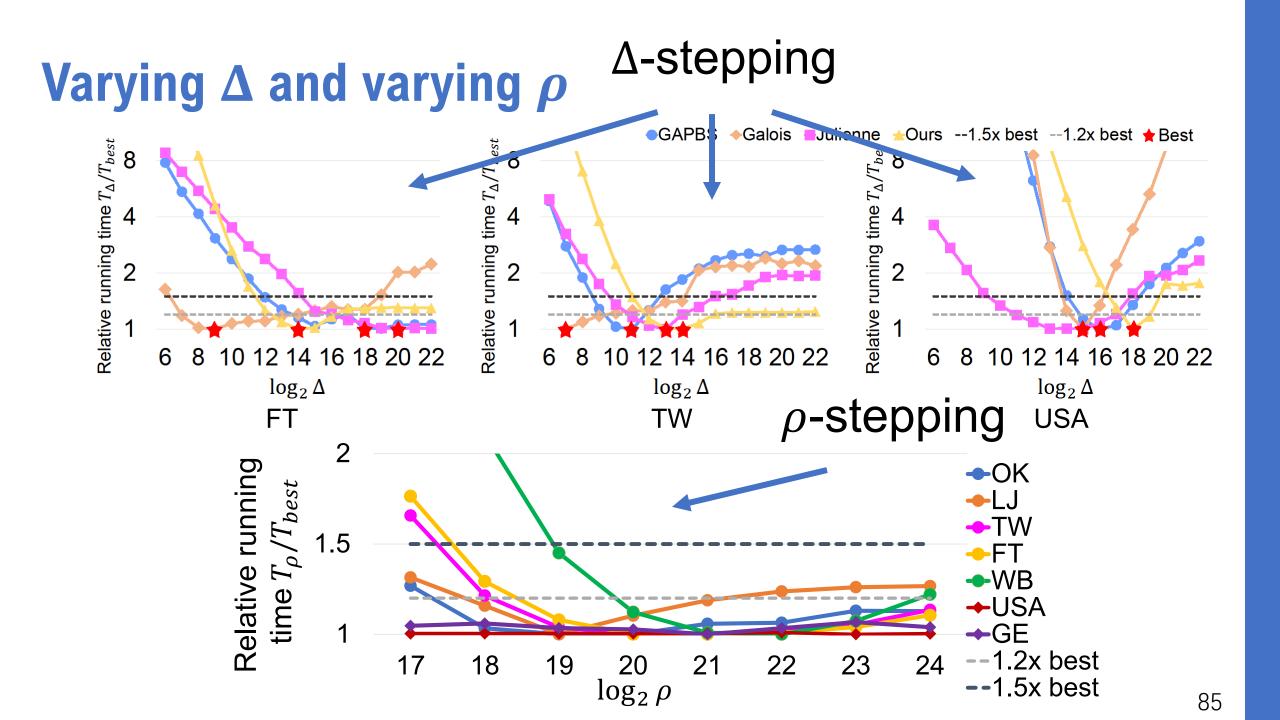


ρ -stepping: sufficient but minimal work to saturate all processors, independent with graph properties



ρ -stepping: can be too eager for large diameter graphs



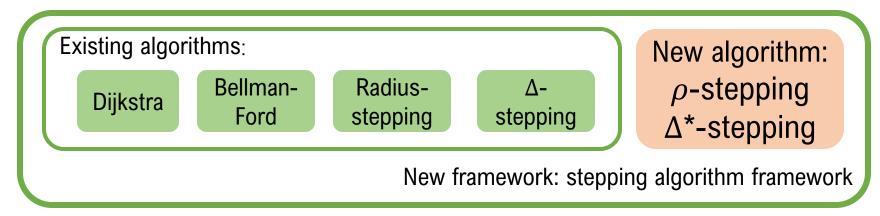


Other experiments

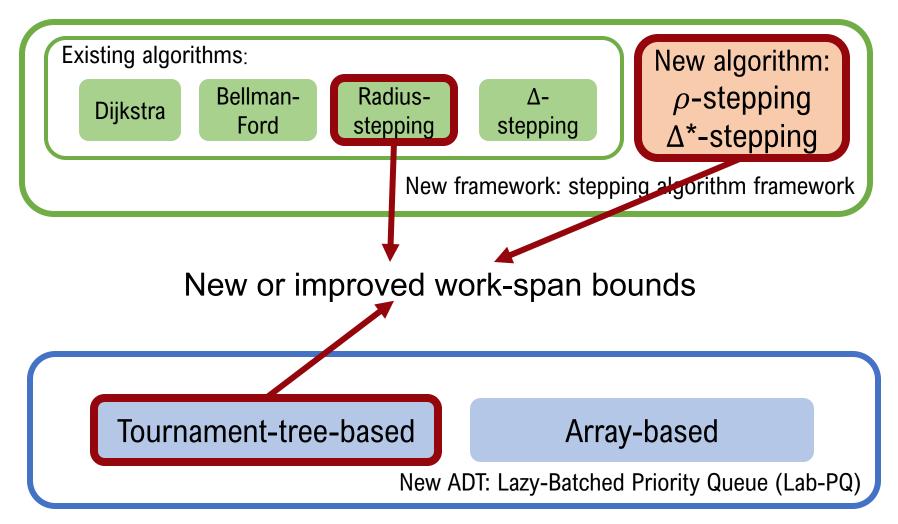
• More experimental results

- difference source vertices
- different machine
- Average #visits per edge
- given in the full version of this paper

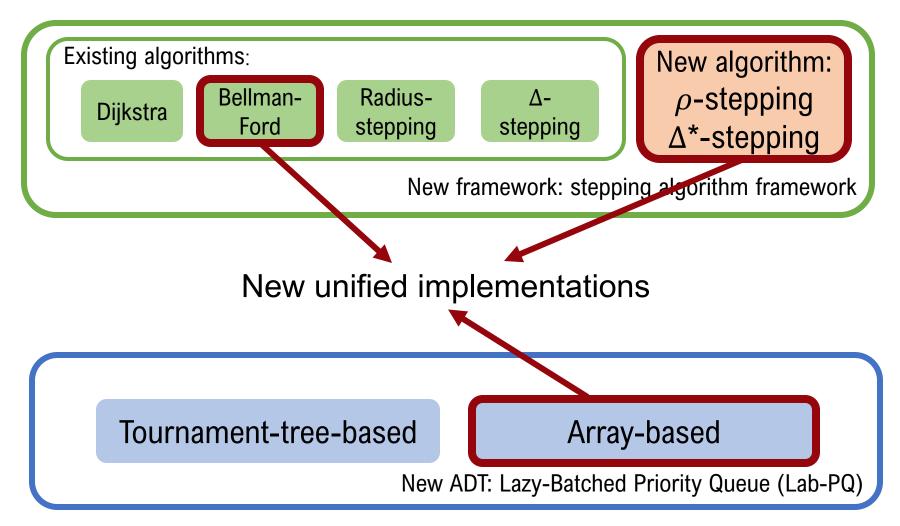
Our approach



Our results: theoretical analysis

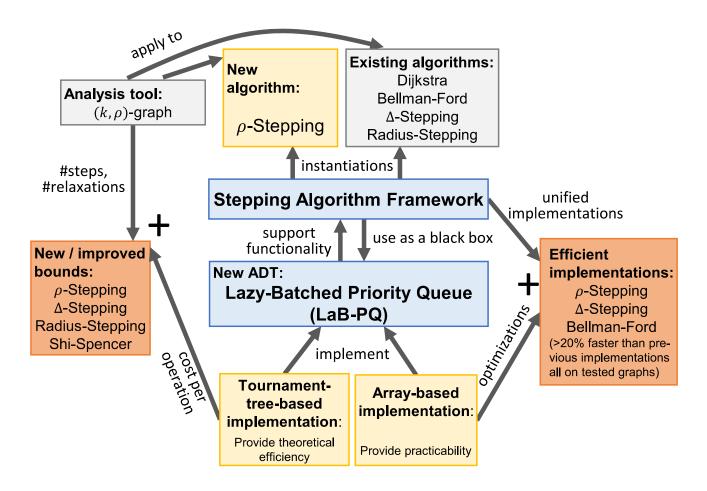


Our results: efficient implementations



New algorithm: ρ -stepping and Δ^* -stepping

- Extremely simple on top of the LaB-PQ
 - Just use an array
- Good theoretical guarantee: similar to Radius-Stepping
- Avoid sub-steps in Δ -stepping and Radius-Stepping
- ρ -stepping
 - Insensitive to the value of ho
 - Especially good on scale-free networks
- Δ*-stepping
 - Simply remove the FinishCheck in $\Delta\mbox{-stepping}$
 - Especially good on road networks



- Full version: https://arxiv.org/abs/2105.06145
- Code: https://github.com/ucrparlay/Parallel-SSSP
- Contact: Xiaojun Dong (xdong038@ucr.edu)