
Fast Parallel Algorithms for Euclidean Minimum Spanning
Tree and Hierarchical Spatial Clustering

Yiqiu Wang
MIT CSAIL

yiqiuw@mit.edu

Shangdi Yu
MIT CSAIL

shangdiy@mit.edu

Yan Gu
UC Riverside

ygu@cs.ucr.edu

Julian Shun
MIT CSAIL

jshun@mit.edu

Abstract
This paper presents new parallel algorithms for generating Eu-

clidean minimum spanning trees and spatial clustering hierarchies
(known as HDBSCAN∗). Our approach is based on generating a well-
separated pair decomposition followed by using Kruskal’s minimum
spanning tree algorithm and bichromatic closest pair computations.
We introduce a new notion of well-separation to reduce the work
and space of our algorithm for HDBSCAN∗. We also present a paral-
lel approximate algorithm for OPTICS based on a recent sequential
algorithm by Gan and Tao. Finally, we give a new parallel divide-and-
conquer algorithm for computing the dendrogram and reachability
plots, which are used in visualizing clusters of different scale that
arise for both EMST and HDBSCAN∗. We show that our algorithms
are theoretically efficient: they have work (number of operations)
matching their sequential counterparts, and polylogarithmic depth
(parallel time).

We implement our algorithms and propose a memory optimization
that requires only a subset of well-separated pairs to be computed and
materialized, leading to savings in both space (up to 10x) and time
(up to 8x). Our experiments on large real-world and synthetic data
sets using a 48-core machine show that our fastest algorithms outper-
form the best serial algorithms for the problems by 11.13–55.89x,
and existing parallel algorithms by at least an order of magnitude.

ACM Reference Format:
Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast Parallel Al-
gorithms for Euclidean Minimum Spanning Tree and Hierarchical Spatial
Clustering. In Proceedings of the 2021 International Conference on Manage-
ment of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3448016.3457296

1 Introduction
This paper studies the two related geometric problems of Eu-

clidean minimum spanning tree (EMST) and hierarchical density-
based spatial clustering with added noise [16]. The problems take as
input a set of 𝑛 points in a 𝑑-dimensional space. EMST computes
a minimum spanning tree on a complete graph formed among the
𝑛 points with edges between two points having the weight equal to
their Euclidean distance. EMST has many applications, including in
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457296

single-linkage clustering [31], network placement optimization [60],
and approximating the Euclidean traveling salesman problem [59].

Hierarchical density-based spatial clustering of applications
with noise (HDBSCAN∗) is a popular hierarchical clustering algo-
rithm [16]. The goal of density-based spatial clustering is to clus-
ter points that are in dense regions and close together in proxim-
ity. One of the most widely-used density-based spatial clustering
methods is the density-based spatial clustering of applications with
noise (DBSCAN) method by Ester et al. [23]. DBSCAN requires
two parameters, 𝜖 and minPts, which determine what is consid-
ered “close” and “dense”, respectively. In practice, minPts is usu-
ally fixed to a small constant, but many different values of 𝜖 need
to be explored in order to find high-quality clusters. Many effi-
cient DBSCAN algorithms have been designed both for the sequen-
tial [18, 22, 27, 34] and the parallel context (both shared memory
and distributed memory) [30, 36, 42, 50, 58, 61]. To avoid repeatedly
executing DBSCAN for different values of 𝜖, the OPTICS [7] and
HDBSCAN∗ [16] algorithms have been proposed for constructing
DBSCAN clustering hierarchies, from which clusters from differ-
ent values of 𝜖 can be generated. These algorithms are known to
be robust to outliers in the data set. The algorithms are based on
generating a minimum spanning tree on the input points, where a
subset of the edge weights are determined by Euclidean distance and
the remaining edge weights are determined by a DBSCAN-specific
metric known as the core distance (to be defined in Section 2). Thus,
the algorithms bear some similarity to EMST algorithms.

There has been a significant amount of theoretical work on de-
signing fast sequential EMST algorithms (e.g., [6, 8, 14, 55, 63]).
There have also been some practical implementations of EMST [10,
17, 43, 47], although most of them are sequential (part of the algo-
rithm by Chatterjee et al. [17] is parallel). The state-of-the-art EMST
implementations are either based on generating a well-separated pair
decomposition (WSPD) [15] and applying Kruskal’s minimum span-
ning tree (MST) algorithm on edges produced by the WSPD [17, 47],
or dual-tree traversals on 𝑘-d trees integrated into Boruvka’s MST
algorithm [43]. Much less work has been proposed for parallel
HDBSCAN∗ and OPTICS [51, 54]. In this paper, we design new
algorithms for EMST, which can also be leveraged to design a fast
parallel HDBSCAN∗ algorithm.

This paper presents practical parallel in-memory algorithms for
EMST and HDBSCAN∗, and proves that the theoretical work (num-
ber of operations) of our implementations matches their state-of-
the-art counterparts (𝑂 (𝑛2)), while having polylogarithmic depth.1

Our algorithms are based on finding the WSPD and then running
Kruskal’s algorithm on the WSPD edges. For our HDBSCAN∗ al-
gorithm, we propose a new notion of well-separation to include the
1The work is the total number of operations and depth (parallel time) is the length of
the longest sequential dependence.

1

ar
X

iv
:2

10
4.

01
12

6v
1

 [
cs

.D
S]

 2
 A

pr
 2

02
1

https://doi.org/10.1145/3448016.3457296
https://doi.org/10.1145/3448016.3457296

notion of core distances, which enables us to improve the space
usage and work of our algorithm.

Given the MST from the EMST or the HDBSCAN∗ problem, we
provide an algorithm to generate a dendrogram, which represents
the hierarchy of clusters in our data set. For EMST, this solves the
single-linkage clustering problem [31], and for HDBSCAN∗, this
gives us a dendrogram as well as a reachability plot [16]. We intro-
duce a work-efficient2 parallel divide-and-conquer algorithm that
first generates an Euler tour on the tree, splits the tree into multiple
subtrees, recursively generates the dendrogram for each subtree, and
glues the results back together. An in-order traversal of the den-
drogram gives the reachability plot. Our algorithm takes 𝑂 (𝑛 log𝑛)
work and 𝑂 (log2 𝑛 log log𝑛) depth. Our parallel dendrogram algo-
rithm is of independent interest, as it can also be applied to generate
dendrograms for other clustering problems.

We provide optimized parallel implementations of our EMST and
HDBSCAN∗ algorithms. We introduce a memory optimization that
avoids computing and materializing many of the WSPD pairs, which
significantly improves the performance of our algorithm (up to 8x
faster and 10x less space). We also provide optimized implementa-
tions of 𝑘-d trees, which our algorithms use for spatial queries.

We perform a comprehensive set of experiments on both synthetic
and real-world data sets using varying parameters, and compare
the performance of our implementations to optimized sequential
implementations as well as existing parallel implementations. Com-
pared to existing EMST sequential implementations [43, 44], our
fastest sequential implementation is 0.89–4.17x faster (2.44x on aver-
age). On a 48-core machine with hyper-threading, our EMST imple-
mentation achieves 14.61–55.89x speedup over the fastest sequen-
tial implementations. Our HDBSCAN∗ implementation achieves
11.13–46.69x speedup over the fastest sequential implementations.
Compared to existing sequential and parallel implementations for
HDBSCAN∗ [28, 44, 51, 54], our implementation is at least an or-
der of magnitude faster. Our source code is publicly available at
https://github.com/wangyiqiu/hdbscan.

We summarize our contributions below:
• New parallel algorithms for EMST and HDBSCAN∗ with strong

theoretical guarantees.
• A new definition of well-separation that computes the HDB-

SCAN* MST using asymptotically less space.
• Memory-optimized parallel implementations for EMST and

HDBSCAN∗ that give significant space and time improvements.
• A new parallel algorithm for dendrogram construction.
• A comprehensive experimental study of the proposed methods.
In the Appendix, we present several additional theoretical results:

(1) an EMST algorithm with subquadratic work and polylogarith-
mic depth based on a subquadratic-work sequential algorithm by
Callahan and Kosaraju [14]; (2) an HDBSCAN∗ algorithm for two
dimensions with𝑂 (minPts2 ·𝑛 log𝑛) work, matching the sequential
algorithm by Berg et al. [22], and 𝑂 (minPts · log2 𝑛) depth; and (3)
a work-efficient parallel algorithm for approximate OPTICS based
on the sequential algorithm by Gan and Tao [28].

The rest of the paper is organized as follows. Section 2 introduces
relevant definitions. Section 3 presents our parallel well-separated
2A work-efficient parallel algorithm has a work bound that matches the best sequential
algorithm for the problem.

pair decomposition approach and uses it to obtain parallel algorithms
for the two problems. Section 4 presents our parallel dendrogram
construction algorithm, which can be used to generate the single-
linkage clustering, HDBSCAN∗ dendrogram, and reachability plot.
Section 5 presents experimental results. We conclude in Section 6.

2 Preliminaries
2.1 Problem Definitions
EMST. The Euclidean Minimum Spanning Tree (EMST) problem
takes 𝑛 points P = {𝑝1, . . . , 𝑝𝑛} and returns a minimum spanning
tree (MST) of the complete undirected Euclidean graph of P.
DBSCAN∗. The DBSCAN∗ (density-based spatial clustering of ap-
plications with noise) problem takes as input𝑛 points P = {𝑝1, . . . , 𝑝𝑛},
a distance function 𝑑 , and two parameters 𝜖 and minPts [16, 23]. A
point 𝑝 is a core point if and only if |{𝑝𝑖 | 𝑝𝑖 ∈ P, 𝑑 (𝑝, 𝑝𝑖) ≤ 𝜖}| ≥
minPts. A point is called a noise point otherwise. We denote the
set of core points as Pcore. DBSCAN∗ computes a partition of
Pcore, where each subset is referred to as a cluster, and also re-
turns the remaining points as noise points. Two points 𝑝, 𝑞 ∈ Pcore
are in the same cluster if and only if there exists a list of points
𝑝 = 𝑝1, 𝑝2, . . . , 𝑝𝑘−1, 𝑝𝑘 = 𝑞 in Pcore such that 𝑑 (𝑝𝑖−1, 𝑝𝑖) ≤ 𝜖 for
all 1 < 𝑖 ≤ 𝑘. For a given set of points and two parameters 𝜖 and
minPts, the clusters returned are unique.3

HDBSCAN∗. The HDBSCAN∗ (hierarchical DBSCAN∗) problem [16]
takes the same input as DBSCAN∗, but without the 𝜖 parameter, and
computes a hierarchy of DBSCAN∗ clusters for all possible values of
𝜖. We first introduce some definitions, and then describe how the hi-
erarchy is computed and represented. The core distance of a point 𝑝,
cd(𝑝), is the distance from 𝑝 to its minPts-nearest neighbor (includ-
ing 𝑝 itself). The mutual reachability distance between two points
𝑝 and 𝑞 is defined to be 𝑑𝑚 (𝑝, 𝑞) =𝑚𝑎𝑥{cd(𝑝), cd(𝑞), 𝑑 (𝑝, 𝑞)}. The
mutual reachability graph 𝐺MR is a complete undirected graph,
where the vertices are the points in P, and the edges are weighted
by the mutual reachability distances.4

The HDBSCAN∗ hierarchy is sequentially computed in two
steps [16]. The first step computes an MST of 𝐺MR and then adds a
self-edge to each vertex weighted by its core distance. An example
MST is shown in Figure 1a. We note that the HDBSCAN∗ MST
with minPts = 1 is equivalent to the EMST, since the mutual reacha-
bility distance at minPts = 1 is equivalent to the Euclidean distance.
We further elaborate on the relationship between HDBSCAN∗ and
EMST in Appendix D. A dendrogram representing clusters at dif-
ferent values of 𝜖 is computed by removing edges from the MST
plus self-edges graph in decreasing order of weight. The root of the
dendrogram is a cluster containing all points. Each non-self-edge
removal splits a cluster into two, which become the two children
of the cluster in the dendrogram. The height of the split cluster in
the dendrogram is equal to the weight of the removed edge. If the
removed edge is a self-edge, we mark the component (point) as a
noise point. An example of a dendrogram is shown in Figure 1b. If
we want to return the clusters for a particular value of 𝜖, we can
horizontally cut the dendrogram at that value of 𝜖 and return the
3The original DBSCAN definition includes the notion of border points, which are
non-core points that are within a distance of 𝜖 to core points [23]. DBSCAN∗ chooses
to omit this to be more consistent with a statistical interpretation of clusters [16].
4The related OPTICS problem also generates a hierarchy of clusters but with a definition
of reachability distance that is asymmetric, leading to a directed graph [7].

2

https://github.com/wangyiqiu/hdbscan

a
d

b

e

4
√10

√10

√17

a d b c e g f h
2

3

4

5

6
d-e

b-c
a-d b-d

f-g
f-h

e-g
2

3

4

5

6

∞

4

√10

√17

6

√5
2√2

a d b c e g f h

(a)

(b) (c)

c

i

h-i
18 18

i

√346

... ...

6
2

1

√10

√2 g
f

√5

√5

2√2

i √346

h

1 2√2

18

√5

√5

Figure 1: (a) An MST of the HDBSCAN∗ mutual reachability graph
on an example data set in 2D. The red number next to each point is
the core distance of the point for minPts = 3. The Euclidean distances
between points are denoted by grey edges, whose values are marked in
black. For example, 𝑎’s core distance is 4 because 𝑏 is 𝑎’s third nearest
neighbor (including itself) and 𝑑 (𝑎,𝑏) = 4. The edge weight of (𝑎,𝑑)
is max{4,

√
10,

√
2} = 4. (b) An HDBSCAN∗ dendrogram for the data

set. A point becomes a noise point when its vertical line becomes red.
For example, if we cut the dendrogram at 𝜖 = 3.5, then we have two
clusters {𝑑,𝑏 } and {𝑒, 𝑔, 𝑓 , ℎ}, while 𝑎, 𝑐 and 𝑖 are noise points. (c) A
reachability plot for the data set starting at point 𝑎. The two “valleys”,
{𝑎,𝑏, 𝑐,𝑑 } and {𝑒, 𝑓 , 𝑔, ℎ}, are the two most obvious clusters.

resulting subtrees below the cut as the clusters or noise points. This
is equivalent to removing edges from the MST of 𝐺MR with weight
greater than 𝜖.

For HDBSCAN∗, the reachability plot (OPTICS sequence) [7]
contains all points in P in some order {𝑝𝑖 | 𝑖 = 1, . . . , 𝑛}, where each
point 𝑝𝑖 is represented as a bar with height min{𝑑𝑚 (𝑝𝑖 , 𝑝 𝑗) | 𝑗 < 𝑖}.
For HDBSCAN∗, the order of the points is the order that they are
visited in an execution of Prim’s algorithm on the MST of 𝐺MR
starting from an arbitrary point [7]. An example is shown in Fig-
ure 1c. Intuitively, the "valleys" of the reachability plot correspond
to clusters [16].

2.2 Parallel Primitives
We use the classic work-depth model for analyzing parallel shared-

memory algorithms [20, 38, 39]. The work 𝑊 of an algorithm is
the number of instructions in the computation, and the depth 𝐷 is
the longest sequential dependence. Using Brent’s scheduling theo-
rem [12], we can execute a parallel computation in𝑊 /𝑝 +𝐷 running
time using 𝑝 processors. In practice, we can use randomized work-
stealing schedulers that are available in existing languages such
as Cilk, TBB, X10, and Java Fork-Join. We assume that priority
concurrent writes are supported in 𝑂 (1) work and depth.

Prefix sum takes as input a sequence [𝑎1, 𝑎2, . . . , 𝑎𝑛], an associa-
tive binary operator ⊕, and an identity element 𝑖, and returns the
sequence [𝑖, 𝑎1, (𝑎1 ⊕ 𝑎2), . . . , (𝑎1 ⊕ 𝑎2 ⊕ . . . ⊕ 𝑎𝑛−1)] as well as
the overall sum (using binary operator ⊕) of the elements. Filter
takes an array 𝐴 and a predicate function 𝑓 , and returns a new array
containing 𝑎 ∈ 𝐴 for which 𝑓 (𝑎) is true, in the same order that they
appear in 𝐴. Filter can be implemented using prefix sum. Split takes
an array 𝐴 and a predicate function 𝑓 , and moves all of the “true”
elements before the “false” elements. Split can be implemented us-
ing filter. The Euler tour of a tree takes as input an adjacency list

representation of the tree and returns a directed circuit that traverses
every edge of the tree exactly once. List ranking takes a linked list
with values on each node and returns for each node the sum of values
from the node to the end of the list. All of the above primitives can be
implemented in 𝑂 (𝑛) work and 𝑂 (log𝑛) depth [38]. Semisort [32]
takes as input 𝑛 items, each with a key, and groups the items with the
same key together, without any guarantee on the ordering of items
with different keys. This algorithm takes 𝑂 (𝑛) expected work and
𝑂 (log𝑛) depth with high probability. A parallel hash table supports
𝑛 inserts, deletes, and finds in 𝑂 (𝑛) work and 𝑂 (log𝑛) depth with
high probability [29]. WRITEMIN is a priority concurrent write that
takes as input two arguments, where the first argument is the loca-
tion to write to and the second argument is the value to write; on
concurrent writes, the smallest value is written [57].

2.3 Relevant Techniques
𝑘-NN Query. A 𝑘-nearest neighbor (𝑘-NN) query takes a point
data set P and a distance function, and returns for each point in P
its 𝑘 nearest neighbors (including itself). Callahan and Kosaraju [13]
show that 𝑘-NN queries in Euclidean space for all points can be
solved in parallel in 𝑂 (𝑘𝑛 log𝑛) work and 𝑂 (log𝑛) depth.
𝑘d-tree. A 𝑘d-tree is a commonly used data structure for 𝑘-NN
queries [25]. It is a binary tree that is constructed recursively: each
node in the tree represents a set of points, which are partitioned
between its two children by splitting along one of the dimensions;
this process is recursively applied on each of its two children until
a leaf node is reached (a leaf node is one that contains at most 𝑐
points, for a predetermined constant 𝑐). It can be constructed in
parallel by processing each child in parallel. A 𝑘-NN query can be
answered by traversing nodes in the tree that are close to the input
point, and pruning nodes further away that cannot possibly contain
the 𝑘 nearest neighbors.
BCCP and BCCP*. Existing algorithms, as well as some of our
new algorithms, use subroutines for solving the bichromatic closest
pair (BCCP) problem, which takes as input two sets of points,𝐴 and
𝐵, and returns the pair of points 𝑝1 and 𝑝2 with minimum distance
between them, where 𝑝1 ∈ 𝐴 and 𝑝2 ∈ 𝐵. We also define a variant,
the BCCP* problem, that finds the pair of points with the minimum
mutual reachability distance, as defined for HDBSCAN∗.
Well-Separated Pair Decomposition. We use the same definitions
and notations as in Callahan and Kosaraju [15]. Two sets of points,
𝐴 and 𝐵, are well-separated if 𝐴 and 𝐵 can each be contained in
spheres of radius 𝑟 , and the minimum distance between the two
spheres is at least 𝑠𝑟 , for a separation constant 𝑠 (we use 𝑠 = 2
throughout the paper). An interaction product of point sets 𝐴 and
𝐵 is defined to be 𝐴 ⊗ 𝐵 = {{𝑝, 𝑝 ′}| 𝑝 ∈ 𝐴, 𝑝 ′ ∈ 𝐵, 𝑝 ≠ 𝑝 ′}. The
set {{𝐴1, 𝐵1}, . . . , {𝐴𝑘 , 𝐵𝑘 }} is a well-separated realization of𝐴⊗𝐵

if: (1) 𝐴𝑖 ⊆ 𝐴 and 𝐵𝑖 ⊆ 𝐵 for all 𝑖 = 1, ..., 𝑘; (2) 𝐴𝑖 ∩ 𝐵𝑖 = ∅ for
all 𝑖 = 1, ..., 𝑘; (3) (𝐴𝑖 ⊗ 𝐵𝑖)

⋂ (𝐴 𝑗 ⊗ 𝐵 𝑗) = ∅ for all 𝑖, 𝑗 where
1 ≤ 𝑖 < 𝑗 ≤ 𝑘; (4) 𝐴 ⊗ 𝐵 =

⋃𝑘
𝑖=1 𝐴𝑖 ⊗ 𝐵𝑖 ; (5) 𝐴𝑖 and 𝐵𝑖 are

well-separated for all 𝑖 = 1, ..., 𝑘 .
For a point set P, a well-separated pair decomposition (WSPD)

is a well-separated realization of P⊗P. We discuss how to construct
a WSPD using a 𝑘d-tree in Section 3.
Notation. Table 1 shows notation frequently used in the paper.

3

Notation Definition
𝑑 (𝑝,𝑞) Euclidean distance between points 𝑝 and 𝑞.
𝑑𝑚 (𝑝,𝑞) Mutual reachability distance between points 𝑝 and 𝑞.

𝑑 (𝐴, 𝐵) Minimum distance between the bounding spheres of
points in tree node 𝐴 and points in tree node 𝐵.

𝑤 (𝑢, 𝑣) Weight of edge (𝑢, 𝑣) .
𝐴diam Diameter of the bounding sphere of points in tree node 𝐴.

cdmin (𝐴) Minimum core distance of points in tree node 𝐴.
cdmax (𝐴) Maximum core distance of points in tree node 𝐴.

Table 1: Summary of Notation

Algorithm 1 Well-Separated Pair Decomposition
1: procedure WSPD(𝐴)
2: if |𝐴 | > 1 then
3: do in parallel
4: WSPD(𝐴left) ⊲ parallel call on the left child of 𝐴
5: WSPD(𝐴right) ⊲ parallel call on the right child of 𝐴

6: FINDPAIR(𝐴left , 𝐴right)

7: procedure FINDPAIR(𝑃 , 𝑃 ′)
8: if 𝑃diam < 𝑃 ′

diam then
9: SWAP(𝑃 , 𝑃 ′)

10: if WELLSEPARATED(𝑃 , 𝑃 ′) then RECORD(𝑃 , 𝑃 ′)
11: else
12: do in parallel
13: FINDPAIR(𝑃left , 𝑃 ′) ⊲ 𝑃left is the left child of 𝑃
14: FINDPAIR(𝑃right , 𝑃 ′) ⊲ 𝑃right is the right child of 𝑃

3 Parallel EMST and HDBSCAN∗

In this section, we present our new parallel algorithms for EMST
and HDBSCAN∗. We also introduce our new memory optimization
to improve space usage and performance in practice.

3.1 EMST
To solve EMST, Callahan and Kosaraju present an algorithm for

constructing a WSPD that creates an edge between the BCCP of
each pair in the WSPD with weight equal to their distance, and
then runs an MST algorithm on these edges. They show that their
algorithm takes 𝑂 (𝑇𝑑 (𝑛, 𝑛) log𝑛) work [14], where 𝑇𝑑 (𝑛, 𝑛) refers
to the work of computing BCCP on two sets each of size 𝑛.

For our parallel EMST algorithm, we parallelize WSPD construc-
tion algorithm, and then develop a parallel variant of Kruskal’s MST
algorithm that runs on the edges formed by the pairs in the WSPD.
We also propose a non-trivial optimization to make the implementa-
tion fast and memory-efficient.

3.1.1 Constructing a WSPD in Parallel We introduce the basic
parallel WSPD in Algorithm 1. Prior to calling WSPD, we construct
a spatial median 𝑘d-tree 𝑇 in parallel with each leaf containing
one point. Then, we call the procedure WSPD on Line 1 and make
the root node of 𝑇 its input. In WSPD, we make parallel calls to
FINDPAIR on the two children of all non-leaf nodes by recursively
calling WSPD. The procedure FINDPAIR on Line 7 takes as input
a pair (𝑃, 𝑃 ′) of nodes in 𝑇 , and checks whether 𝑃 and 𝑃 ′ are well-
separated. If they are well-separated, then the algorithm records
them as a well-separated pair on Line 10; otherwise, the algorithm
splits the set with the larger bounding sphere into its two children
and makes two recursive calls in parallel (Lines 13–14). This process
is applied recursively until the input pairs are well-separated. The
major difference of Algorithm 1 from the serial version is the parallel
thread-spawning on Lines 3–5 and 12–14. This procedure generates
a WSPD with 𝑂 (𝑛) pairs [14].

3.1.2 Parallel GFK Algorithm for EMST The original algorithm
by Callahan and Kosaraju [14] computes the BCCP between each

Algorithm 2 Parallel GeoFilterKruskal
1: procedure PARALLELGFK(WSPD: 𝑆 , Edges: 𝐸out , UnionFind: UF)
2: 𝛽 = 2
3: while |𝐸out | < (𝑛 − 1) do
4: (𝑆𝑙 , 𝑆𝑢) = SPLIT(𝑆 , 𝑓𝛽) ⊲ For a pair (𝐴, 𝐵) , 𝑓𝛽 checks if |𝐴 | + |𝐵 | ≤ 𝛽

5: 𝜌hi = min(𝐴,𝐵)∈𝑆𝑢 𝑑 (𝐴, 𝐵)
6: (𝑆𝑙1, 𝑆𝑙2) = SPLIT(𝑆𝑙 , 𝑓𝜌hi) ⊲ For a pair (𝐴, 𝐵) , 𝑓𝜌hi checks if

BCCP(𝐴, 𝐵) ≤ 𝜌hi
7: 𝐸𝑙1 = GETEDGES(𝑆𝑙1) ⊲ Retrieves edges associated with pairs in 𝑆𝑙1
8: PARALLELKRUSKAL(𝐸𝑙1, 𝐸out , UF)
9: 𝑆 = FILTER(𝑆𝑙2 ∪ 𝑆𝑢 , 𝑓diff) ⊲ For a pair (𝐴, 𝐵) , 𝑓diff checks points in 𝐴

are in different component from 𝐵 in UF
10: 𝛽 = 𝛽 × 2

(b,c)
2, 1

(e,h)
2,√17

(h,Q
7
)

3, √5

(e,Q
7
)

3, 2
(Q

4
,Q

5
)

4,√10

 (Q
2
,Q

6
)

 7, 8
(a,d)
2, √2

Round 1, β=2, ρ
hi

=d(h,Q
7
)

Q
4 Q

5

Q
2

a
f g

d b c

e

h

Q
6

Q
7

Q
1

(e,Q
2
)

3, 6

(A, B)

|A|+|B|, BCCP

Color CodeFormat
Sl1 Sl2 Su

(f,g)
2, 1

Q
3

 (Q
1
, i)

 9, 18

(e,h)
2,√17

(h,Q
7
)

3, √5

(e,Q
7
)

3, 2
(Q

4
,Q

5
)

4,√10
(e,Q

2
)

3, 6
 (Q

2
,Q

6
)

 7, 8
 (Q

1
, i)

 9, 18

Round 2, β=4, ρ
hi

=d(Q
2
,Q

6
)

Round 3, β=8

Q
0

 (Q
1
, i)

 9, 18

i

Figure 2: The is an example for both GFK (Algorithm 2) and MEM-
OGFK (Algorithm 3) for EMST corresponding to the data set shown in
Figure 1. The red lines linking tree nodes and the boxes drawn below
represent well-separated pairs, and the boxes also show the cardinality
and BCCP value of the pair. Their correspondence with the symbols
(𝑆𝑙1, 𝑆𝑙2, 𝑆𝑢) in the pseudocode are color-coded. The pairs that generate
𝜌hi are bold-squared, and the pairs filtered out have a red cross. Using
our MemoGFK optimization, only the pairs in 𝑆𝑙1 needs to be material-
ized, in contrast to needing to materialize all of the pairs in GFK.

pair in the WSPD to generate a graph from which an MST can
be computed to obtain the EMST. However, it is not necessary
to compute the BCCP for all pairs, as observed by Chatterjee et
al. [17]. Our implementation only computes the BCCP between
a pair if their points are not yet connected in the spanning forest
generated so far. This optimization reduces the total number of
BCCP calls. Furthermore, we propose a memory optimization that
avoids materializing all of the pairs in the WSPD. We will first
describe how we obtain the EMST from the WSPD, and then give
details of our memory optimization.

The original Kruskal’s algorithm is an MST algorithm that takes
input edges sorted by non-decreasing weight, and processes the
edges in order, using a union-find data structure to join components
for edges with endpoints in different components. Our implementa-
tion is inspired by a variant of Kruskal’s algorithm, GeoFilterKruskal
(GFK). This algorithm was used for sequential EMST by Chatterjee
et al. [17], and for MST in general graphs by Osipov et al. [49].
It improves Kruskal’s algorithm by avoiding the BCCP computa-
tion between pairs unless needed, and prioritizing BCCPs between
pairs with smaller cardinalities, which are cheaper, with the goal of
pruning more expensive BCCP computations.

We propose a parallel GFK algorithm as shown in Algorithm 2. It
uses Kruskal’s MST algorithm as a subroutine by passing it batches
of edges, where each batch has edges with weights no less than those

4

of edges in previous batches, and the union-find structure is shared
across multiple invocations of Kruskal’s algorithm. PARALLELGFK
takes as input the WSPD pairs 𝑆 , an array 𝐸out to store the MST
edges, and a union-find structure UF . On each round, given a constant
𝛽, we only consider node pairs in the WSPD with cardinality (sum
of sizes) at most 𝛽 because it is cheaper to compute their BCCPs. To
do so, the set of pairs 𝑆 is partitioned into 𝑆𝑙 , containing pairs with
cardinality at most 𝛽, and 𝑆𝑢 , containing the remaining pairs (Line 4).
However, it is only correct to consider pairs in 𝑆𝑙 that produce edges
lighter than any of the pairs in 𝑆𝑢 . On Line 5, we compute an upper
bound 𝜌hi for the edges in 𝑆𝑙 by setting 𝜌hi equal to the minimum
𝑑 (𝐴, 𝐵) for all (𝐴, 𝐵) ∈ 𝑆𝑢 (this is a lower bound on the edges
weights formed by these pairs). In the example shown in Figure 2,
in the first round, with 𝛽 = 2, the set 𝑆𝑙 contains (𝑎, 𝑑), (𝑏, 𝑐), (𝑓 , 𝑔),
and (𝑒, ℎ), and the set 𝑆𝑢 contains (ℎ,𝑄7), (𝑒,𝑄7), (𝑒,𝑄2), (𝑄4, 𝑄5),
(𝑄2, 𝑄6), and (𝑄1, 𝑖). 𝜌hi corresponds to (𝑒,𝑄7) on Line 5. Then, we
compute the BCCP of all elements of set 𝑆𝑙 , and split it into 𝑆𝑙1 and
𝑆𝑙2, where 𝑆𝑙1 has edges with weight at most 𝜌hi (Line 6). On Line 6,
𝑆𝑙1 contains (𝑎, 𝑑), (𝑏, 𝑐) and (𝑓 , 𝑔), as their BCCP distances are
smaller than 𝜌hi = 𝑑 (𝑒,𝑄7), and 𝑆𝑙2 contains (𝑒, ℎ) . After that, 𝐸𝑙1,
the edges corresponding to 𝑆𝑙1, are passed to Kruskal’s algorithm
(Lines 7–8). The remaining pairs 𝑆𝑙2 ∪ 𝑆𝑢 are then filtered based
on the result of Kruskal’s algorithm (Line 9)—in particular, pairs
that are connected in the union-find structure of Kruskal’s algorithm
can be discarded, and for many of these pairs we never have to
compute their BCCP. In Figure 2, the second round processes (𝑒, ℎ),
(ℎ,𝑄7), (𝑒,𝑄7), (𝑒,𝑄2), (𝑄4, 𝑄5), (𝑄2, 𝑄6), and (𝑄1, 𝑖), and works
similarly to Round 1. However, (𝑄2, 𝑄6) gets filtered out during the
second round, and we never have to compute its BCCP, leading to
less work compared to a naive algorithm. Finally, the subsequent
rounds process a single pair (𝑄1, 𝑖). At the end of each round, we
double the value of 𝛽 to ensure that there are logarithmic number of
rounds and hence better depth (in contrast, the sequential algorithm
of Chatterjee et al. [17] increases 𝛽 by 1 every round). Throughout
the algorithm, we cache the BCCP results of pairs to avoid repeated
computations. Overall, the main difference between Algorithm 2
and sequential algorithm is the use of parallel primitives on nearly
every line of the pseudocode, and the exponentially increasing value
of 𝛽 on Line 11, which is crucial for achieving a low depth bound.

The following theorem summarizes the bounds of our algorithm.

Theorem 3.1. We can compute the EMST on a set of 𝑛 points in
constant dimensions in 𝑂 (𝑛2) work and 𝑂 (log2 𝑛) depth.

Proof. Callahan [13] shows that a WSPD with 𝑂 (𝑛) well-separated
pairs can be computed in𝑂 (𝑛 log𝑛) work and𝑂 (log𝑛) depth, which
we use for our analysis. Our parallel GeoFilterKruskal algorithm
for EMST proceeds in rounds, and processes the well-separated
pairs in an increasing order of cardinality. Since 𝛽 doubles on each
round, there can be at most 𝑂 (log𝑛) rounds since the largest pair
can contain 𝑛 points. Within each round, the SPLIT on Line 4 and
FILTER on Line 9 both take 𝑂 (𝑛) work and 𝑂 (log𝑛) depth. We
can compute the BCCP for each pair on Line 6 by computing all
possible point distances between the pair, and using WRITEMIN

to obtain the minimum distance. Since the BCCP of each pair will
only be computed once and is cached, the total work of BCCP on
Line 6 is

∑
𝐴,𝐵∈𝑆 |𝐴| |𝐵 | = 𝑂 (𝑛2) work since the WSPD is an exact

set cover for all distinct pairs. Therefore, Line 6 takes 𝑂 (𝑛2) work

Algorithm 3 Parallel MemoGFK
1: procedure PARALLELMEMOGFK(𝑘d-tree root: 𝑅, Edges: 𝐸out , UnionFind: UF)
2: 𝛽 = 2, 𝜌lo = 0
3: while |𝐸out | < (𝑛 − 1) do
4: 𝜌hi = GETRHO(𝑅, 𝛽)
5: 𝑆𝑙1 = GETPAIRS(𝑅, 𝛽 , 𝜌lo , 𝜌hi , UF)
6: 𝐸𝑙1 = GETEDGES(𝑆𝑙1) ⊲ Retrieves edges associated with pairs in 𝑆𝑙1
7: PARALLELKRUSKAL(𝐸𝑙1, 𝐸out , UF)
8: 𝛽 = 𝛽 × 2, 𝜌lo = 𝜌hi

across all rounds and 𝑂 (1) depth for each round. Given 𝑛 edges, the
MST computation on Line 8 can be done in 𝑂 (𝑛 log𝑛) work and
𝑂 (log𝑛) depth using existing parallel algorithms [38]. Therefore,
the overall work is 𝑂 (𝑛2). Since each round takes 𝑂 (log𝑛) depth,
and there are 𝑂 (log𝑛) rounds, the overall depth is 𝑂 (log2 𝑛). □

We note that there exist subquadratic work BCCP algorithms [6],
which result in a subquadratic work EMST algorithm. Although
the algorithm is impractical and no implementations exist, for the-
oretical interest we give a work-efficient parallel algorithm with
polylogarithmic depth in Section B of the Appendix.

We implemented our own sequential and parallel versions of the
GFK algorithm as a baseline based on Algorithm 2, which we found
to be faster than the implementation of Chatterjee et al. [17] in
our experiments. In addition, because the original GFK algorithm
requires materializing the full WSPD, its memory consumption can
be excessive, limiting the algorithm’s practicality. This issue worsens
as the dimensionality of the data set increases, as the number of pairs
in the WSPD increases exponentially with the dimension. While
Chatterjee et al. [17] show that their GFK algorithm is efficient, they
consider much smaller data sets than the ones in this paper.

3.1.3 The MemoGFK Optimization To tackle the memory con-
sumption issue, we propose an optimization to the GFK algorithm,
which reduces its space usage and improves its running time in prac-
tice. We call the resulting algorithm MemoGFK (memory-optimized
GFK). The basic idea is that, rather than materializing the full WSPD
at the beginning, we partially traverse the 𝑘d-tree on each round and
retrieve only the pairs that are needed. The pseudocode for our algo-
rithm is shown in Algorithm 3, where PARALLELMEMOGFK takes
in the root 𝑅 of a 𝑘d-tree, an array 𝐸out to store the MST edges, and
a union-find structure UF .

The algorithm proceeds in rounds similar to parallel GeoFil-
terKruskal, and maintains lower and upper bounds (𝜌lo and 𝜌hi)
on the weight of edges to be considered each round. On each round,
it first computes 𝜌hi based on 𝛽 by a single 𝑘d-tree traversal, which
will be elaborated below (Line 4). Then, together with 𝜌lo from the
previous round (𝜌lo = 0 on the first round), the algorithm retrieves
pairs with BCCP distance in the range [𝜌lo, 𝜌hi) via a second 𝑘d-tree
traversal on Line 5. The edges corresponding to these pairs are then
passed to Kruskal’s algorithm on Line 7. An example of the first
round of the algorithm with MemoGFK is illustrated in Figure 2.
Without the optimization, the GFK algorithm needs to first material-
ize all of the pairs in Round 1. With MemoGFK, 𝜌hi = 𝑑 (𝑒,𝑄7) is
computed via a tree traversal on Line 4, after which only the pairs in
the set 𝑆𝑙1 = {(𝑎, 𝑑), (𝑏, 𝑐), (𝑓 , 𝑔)} are retrieved and materialized on
Line 5 via a second tree traversal. Retrieving pairs only as needed
reduces memory usage and improves performance. The correctness
of the algorithm follows from the fact that each round considers

5

A B

Representing pair (A,B)
 below as a range

x

x

ρ
lo

ρ
hi

x

x x

x

x

x

(a) (b)

BCCP(A,B)

d
s
(A,B)

d
s,max

(A,B)

d
s
(A,B)

BCCP(A,B)
d

s,max
(A,B)

Figure 3: (a) shows a representation of a well-separated pair (𝐴, 𝐵) as
a line segment, based on the values of its 𝑑 (𝐴, 𝐵) and 𝑑max (𝐴, 𝐵) , which
serve as the lower and upper bounds, respectively, for their BCCP and
the BCCP of their descendants. The "x"’s on the line marks the value
of the BCCP. (b) shows a conceptual example of tree node pairs encoun-
tered during a pruned tree traversal on Line 5 of Algorithm 3, where
the pairs are represented the same way as in (a). The pairs in solid green
lines, if well-separated, will be retrieved and materialized because their
BCCPs are within the [𝜌lo, 𝜌hi) range, whereas those in solid black lines
will not as their BCCPs are out of range (although their BCCPs will still
be computed, since their lower and upper bounds do not immediately
put them out of range). The traversal will be pruned when encounter-
ing a pair represented by dotted lines as their BCCP and the BCCP of
their descendants will be out of range.

non-overlapping ranges of edge weights in increasing order until all
edges are considered, or when MST is completed.

Now we discuss the implementation details of the two-pass tree
traversal on Line 4–5. The GETRHO subroutine, which computes
𝜌hi, does so by finding the lower bound on the minimum separation
of pairs whose cardinality is greater than 𝛽 and are not yet connected
in the MST. We traverse the 𝑘d-tree starting at the root, in a similar
way as when computing the WSPD in Algorithm 1. During the
process, we update a global copy of 𝜌hi using WRITEMIN whenever
we encounter a well-separated pair in FINDPAIR, with cardinality
greater than 𝛽. We can prune the traversal once |𝐴| + |𝐵 | ≤ 𝛽, as
all pairs that originate from (𝐴, 𝐵) will have cardinality at most 𝛽.
We also prune the traversal when the two children of a tree node are
already connected in the union-find structure, as these edges will not
need to be considered by Kruskal’s algorithm. In addition, we prune
the traversal when the distance between the bounding spheres of 𝐴
and 𝐵, 𝑑 (𝐴, 𝐵), is larger than 𝜌hi, as its descendants cannot produce
a smaller distance.

The GETPAIRS subroutine then retrieves all pairs whose points
are not yet connected in the union-find structure and have BCCP
distances in the range [𝜌lo, 𝜌hi). It does so also via a pruned traversal
on the 𝑘d-tree starting from the root, similarly to Algorithm 1, but
only retrieves the useful pairs. For a pair of nodes encountered in
the FINDPAIR subroutine, we estimate the minimum and maximum
possible BCCP between the pair using bounding sphere calcula-
tions, an example of which is shown in Figure 3a. We prune the
traversal when 𝑑max (𝐴, 𝐵) < 𝜌lo, or when 𝑑 (𝐴, 𝐵) ≥ 𝜌hi, in which
case BCCP(𝐴, 𝐵) (as well as those of its recursive calls on descen-
dant nodes) will be outside of the range. An example is shown in
Figure 3b. In addition, we also prune the traversal if 𝐴 and 𝐵 are
already connected in the MST, as an edge between 𝐴 and 𝐵 will not
be part of the MST.

We evaluate MemoGFK in Section 5. We also use the memory
optimization for HDBSCAN∗, which will be described next.

3.2 HDBSCAN∗

3.2.1 Baseline Inspired by a previous sequential approximate
algorithm to solve the OPTICS problem by Gan and Tao [28],
we modified and parallelized their algorithm to compute the ex-
act HDBSCAN∗ as our baseline. First, we perform 𝑘-NN queries
using Euclidean distance with 𝑘 = minPts to compute the core
distances. Gan and Tao’s original algorithm creates a mutual reach-
ability graph of size 𝑂 (𝑛 · minPts2), using an approximate notion
of BCCP between each WSPD pair, and then computes its MST
using Prim’s algorithm. Our exact algorithm parallelizes their al-
gorithm, and instead uses the exact BCCP* computations based
on the mutual reachability distance to form the mutual reachabil-
ity graph. In addition, we also compute the MST on the generated
edges using the MemoGFK optimization described in Section 3.1.3.
Summed across all well-separated pairs, the BCCP computations
take quadratic work and constant depth. Therefore, our baseline
algorithm takes 𝑂 (𝑛2) work and 𝑂 (log2 𝑛) depth, and computes the
exact HDBSCAN∗. In Section C of the Appendix, we also describe
a work-efficient parallel approximate algorithm based on [28].

3.2.2 Improved Algorithm Here, we present a more space-efficient
algorithm that is also faster in practice. The idea is to use a different
definition of well-separation for the WSPD in HDBSCAN∗. We de-
note the maximum and minimum core distances of the points in node
𝐴 as cdmax (𝐴) and cdmin (𝐴), respectively. Consider a pair (𝐴, 𝐵)
in the WSPD. We define 𝐴 and 𝐵 to be geometrically-separated if
𝑑 (𝐴, 𝐵) ≥ max{𝐴diam, 𝐵diam} and mutually-unreachable if max{
𝑑 (𝐴, 𝐵), cdmin (𝐴), cdmin (𝐵)} ≥ max{𝐴diam, 𝐵diam, cdmax (𝐴), cdmax (𝐵)}.
We consider 𝐴 and 𝐵 to be well-separated if they are geometrically-
separated, mutually-unreachable, or both. Note that the original
definition of well-separation with only includes the first condition.

This leads to space savings because in Algorithm 1, recursive
calls to procedure FINDPAIR(𝐴, 𝐵) on Line 7 will not terminate until
𝐴 and 𝐵 are well-separated. Since our new definition is a disjunction
between mutual-unreachability and geometric-separation, the calls
to FINDPAIR can terminate earlier, leading to fewer pairs generated.
When constructing the mutual reachability subgraph to pass to MST,
we add only a single edge between the BCCP* (BCCP with respect
to mutual reachability distance) of each well-separated pair. With
our new definition, the total number of edges generated is upper
bounded by the size of the WSPD, which is 𝑂 (𝑛) [15]. In contrast,
Gan and Tao’s approach generates 𝑂 (𝑛 · minPts2) edges.

Theorem 3.2. Under the new definition of well-separation, our
algorithm computes an MST of the mutual reachability graph.

Proof. Under our new definition, well-separation is defined as the
disjunction between being geometrically-separated and mutually-
unreachable. We connect an edge between each well-separated pair
(𝐴, 𝐵) with the mutual-reachability distance max{𝑑 (𝑢∗, 𝑣∗), cd(𝑢∗),
cd(𝑣∗)} as the edge weight, where 𝑢∗ ∈ 𝐴, 𝑣∗ ∈ 𝐵, and (𝑢∗, 𝑣∗) is
the BCCP* of (𝐴, 𝐵). We overload the notation BCCP*(𝐴, 𝐵) to
also denote the mutual-reachability distance of (𝑢∗, 𝑣∗).

Consider the point set 𝑃root, which is contained in the root node
of the tree associated with its WSPD. Let 𝑇 be the MST of the full
mutual reachability graph 𝐺𝑀𝑅 . Let 𝑇 ′ be the MST of the mutual
reachability subgraph 𝐺 ′

𝑀𝑅
, computed by connecting the BCCP*

of each well-separated pair. To ensure that 𝑇 ′ produces the correct
6

U V
u

v

u’(u*)

v’(v*)

A

B

u

v

u*

v*

A

B

U V

(a) (b)

u’ v’

Figure 4: In this figure, we show the two proof cases for HDBSCAN∗.
We use an oval to represent each node in the WSPD, and solid black
dots to represent data points. We represent the partition of the space to
𝑈 and𝑉 using a cut represented by a dotted line.

HDBSCAN∗ clustering, we prove that it has the same weight as
𝑇—in other words, 𝑇 ′ is a valid MST of 𝐺𝑀𝑅 .

We prove the optimality of 𝑇 ′ by induction on each tree node 𝑃 .
Since the WSPD is hierarchical, each node 𝑃 also has a valid WSPD
consisting of a subset of pairs of the WSPD of 𝑃root. Let (𝑢, 𝑣) be an
edge in 𝑇 . There exists an edge (𝑢 ′, 𝑣 ′) ∈ 𝑇 ′ that connects the same
two components as in 𝑇 if we were to remove (𝑢, 𝑣). We call (𝑢 ′, 𝑣 ′)
the replacement of (𝑢, 𝑣), which is optimal if 𝑤 (𝑢 ′, 𝑣 ′) = 𝑤 (𝑢, 𝑣).
Let 𝑇𝑃 and 𝑇 ′

𝑃
be subgraphs of 𝑇 and 𝑇 ′, respectively, containing

points in 𝑃 , but not necessarily spanning 𝑃 . We inductively hypoth-
esize that all edges of 𝑇 ′

𝑃
are optimal. In the base case, a singleton

tree node 𝑃 satisfies the hypothesis by having no edges.
Now consider any node 𝑃 and edge (𝑢, 𝑣) ∈ 𝑇𝑃 . The children of

𝑃 are optimal by our inductive hypothesis. We now prove that the
edges connecting the children of 𝑃 are optimal. Points 𝑢 and 𝑣 must
be from a well-separated pair (𝐴, 𝐵), where 𝐴 and 𝐵 are children of
𝑃 from the WSPD hierarchy. Let 𝑈 and 𝑉 be a partition of 𝑃 formed
by a cut in𝑇𝑃 that separates point pair (𝑢, 𝑣), where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 .
We want to prove that the replacement of (𝑢, 𝑣) in 𝑇 ′

𝑃
is optimal.

We now discuss the first scenario of the proof, shown in Fig-
ure 4a, where the replacement edge between 𝑈 and 𝑉 is (𝑢 ′, 𝑣 ′) =
BCCP*(𝐴, 𝐵) = (𝑢∗, 𝑣∗), and we assume without loss of generality
that 𝑢 ′ ∈ 𝐴 ∩𝑈 and 𝑣 ′ ∈ 𝐵 ∩ 𝑉 . Since (𝑢, 𝑣) is the closest pair of
points connecting 𝑈 and 𝑉 by the cut property, then (𝑢 ′, 𝑣 ′), the
BCCP* of (𝐴, 𝐵), must be optimal; otherwise, (𝑢, 𝑣) has smaller
weight than BCCP*(𝐴, 𝐵), which is a contradiction. This scenario
easily generalizes to the case where𝐴 and 𝐵 happen to be completely
within 𝑈 and 𝑉 , respectively.

We now discuss the second scenario, shown in Figure 4b, where
BCCP*(𝐴, 𝐵) = (𝑢∗, 𝑣∗) is internal to either 𝑈 or 𝑉 . We assume
without loss of generality that 𝑢∗ ∈ 𝐴 ∩𝑉 and 𝑣∗ ∈ 𝐵 ∩𝑉 , and that
𝑈 and 𝑉 are connected by some intra-node edge (𝑢 ′, 𝑣 ′) of 𝐴 in 𝑇 ′

𝑃
.

We want to prove that (𝑢 ′, 𝑣 ′) is an optimal replacement edge. We
consider two cases based on the relationship between 𝐴 and 𝐵 under
our new definition of well-separation.
Case 1. Nodes 𝐴 and 𝐵 are mutually-unreachable, and may or may
not be geometrically-separated. The weight of (𝑢 ′, 𝑣 ′) is max{𝑑 (𝑢 ′, 𝑣 ′),
cd(𝑢 ′), cd(𝑣 ′)} ≤ max{𝐴diam, cdmax (𝐴)}. Consider the BCCP*
pair (𝑢∗, 𝑣∗) between 𝐴 and 𝐵. Based on the fact that 𝐴 and 𝐵 are
mutually-unreachable, we have

BCCP*(𝐴, 𝐵) = max{𝑑 (𝑢∗, 𝑣∗), cd(𝑢∗), cd(𝑣∗)}
≥ max{𝑑 (𝐴, 𝐵), cdmin (𝐴), cdmin (𝐵)}
≥ max{𝐴diam, 𝐵diam, cdmax (𝐴), cdmax (𝐵)}
≥ max{𝐴diam, cdmax (𝐴)},

where the inequality from the second to the third line above comes
from the definition of mutual-unreachability. Therefore, 𝑤 (𝑢 ′, 𝑣 ′)

is not larger than BCCP*(𝐴, 𝐵) = 𝑤 (𝑢∗, 𝑣∗), and by definition of
BCCP*, 𝑤 (𝑢∗, 𝑣∗) is not larger than 𝑤 (𝑢, 𝑣). Hence, 𝑤 (𝑢 ′, 𝑣 ′) is
not larger than 𝑤 (𝑢, 𝑣). On the other hand, 𝑤 (𝑢 ′, 𝑣 ′) is not smaller
than 𝑤 (𝑢, 𝑣), since otherwise we could form a spanning tree with
a smaller weight than 𝑇𝑃 , contradicting the fact that it is an MST.
Thus, (𝑢 ′, 𝑣 ′) is optimal.
Case 2. Nodes𝐴 and 𝐵 are geometrically-separated and not mutually-
unreachable. By the definition of BCCP*, we know that𝑤 (𝑢∗, 𝑣∗) ≤
𝑤 (𝑢, 𝑣), which implies

max{cd(𝑢∗), cd(𝑣∗), 𝑑 (𝑢∗, 𝑣∗)} ≤ max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)}
max{cd(𝑢∗), cd(𝑢), 𝑑 (𝑢,𝑢∗)} ≤ max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)}.

To obtain the second inequality above from the first, we replace
cd(𝑣∗) on the left-hand side with cd(𝑢), since cd(𝑢) is also on the
right-hand side; we also replace 𝑑 (𝑢∗, 𝑣∗) with 𝑑 (𝑢,𝑢∗) because of
the geometric separation of 𝐴 and 𝐵. Since (𝑢 ′, 𝑣 ′) is the lightest
BCCP* edge of some well-separated pair in 𝐴, max{cd(𝑢 ′), cd(𝑣 ′),
𝑑 (𝑢 ′, 𝑣 ′)} ≤ max{cd(𝑢), cd(𝑢∗), 𝑑 (𝑢,𝑢∗)}. We then have

max{cd(𝑢 ′), cd(𝑣 ′), 𝑑 (𝑢 ′, 𝑣 ′)} ≤ max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)}.
This implies that 𝑤 (𝑢 ′, 𝑣 ′) is not larger than 𝑤 (𝑢, 𝑣). Since (𝑢, 𝑣) is
an edge of MST 𝑇𝑃 , the weight of the replacement edge 𝑤 (𝑢 ′, 𝑣 ′) is
also not smaller than 𝑤 (𝑢, 𝑣), and hence (𝑢 ′, 𝑣 ′) is optimal.

Case 1 and 2 combined prove the optimality of replacement edges
in the second scenario. Considering both scenarios, we have shown
that each replacement edge in𝑇 ′

𝑝 connecting the children of 𝑃 is opti-
mal, which proves the inductive hypothesis. Applying the inductive
hypothesis to 𝑃root completes the proof. □

Our algorithm achieves the following bounds.
Theorem 3.3. Given a set of 𝑛 points, we can compute the MST on
the mutual reachability graph in 𝑂 (𝑛2) work, 𝑂 (log2 𝑛) depth, and
𝑂 (𝑛 · minPts) space.
Proof. Compared to the cost of GFK for EMST, GFK for HDBSCAN∗

has the additional cost of computing the core distances, which takes
𝑂 (minPts ·𝑛 log𝑛) work and𝑂 (log𝑛) depth using 𝑘-NN [13]. With
our new definition of well-separation, the WSPD computation will
only terminate earlier than in the original definition, and so the
bounds that we showed for EMST above still hold. The new WSPD
definition also gives an 𝑂 (𝑛) space bound for the well-separated
pairs. The space usage of the 𝑘-NN computation is 𝑂 (𝑛 · minPts),
which dominates the space usage. Overall, this gives 𝑂 (𝑛2) work,
𝑂 (log2 𝑛) depth, and 𝑂 (𝑛 · minPts) space. □

Our algorithm gives a clear improvement in space usage over the
naive approach of computing an MST from the mutual reachability
graph, which takes 𝑂 (𝑛2) space, and our parallelization of the exact
version of Gan and Tao’s algorithm, which takes 𝑂 (𝑛 · minPts2)
space. We will also see that the smaller memory footprint of this
algorithm leads to better performance in practice.

3.2.3 Implementation We implement three algorithms for HDBSCAN∗:
a parallel version of the approximate algorithm based on Gan and
Tao [28], a parallel exact algorithm based on Gan and Tao, and
our space-efficient algorithm from Section 3.2.2. Our implemen-
tations all use Kruskal’s algorithm for MST and use the memory
optimization introduced for MemoGFK in Section 3.1.3. For our
space-efficient algorithm, we modify the WSPD and MemoGFK
algorithm to use our new definition of well-separation.

7

4 Dendrogram and Reachability Plot
We present a new parallel algorithm for generating a dendrogram

and reachability plot, given an unrooted tree with edge weights. Our
algorithm can be used for single-linkage clustering [31] by passing
the EMST as input, as well as for generating the HDBSCAN∗ dendro-
gram and reachability plot (refer to Section 2 for definitions). In addi-
tion, our dendrogram algorithm can be used in efficiently generating
hierarchical clusters using other linkage criteria (e.g., [48, 62, 64]).

Sequentially, the dendrogram can be generated in a bottom-up (ag-
glomerative) fashion by sorting the edges by weight and processing
the edges in increasing order of weight [22, 31, 35, 44, 46]. Initially,
all points are assigned their own clusters. Each edge merges the
clusters of its two endpoints, if they are in different clusters, using
a union-find data structure. The order of the merges forms a tree
structure, which is the dendrogram. This takes 𝑂 (𝑛 log𝑛) work, but
has little parallelism since the edges need to be processed one at a
time. For HDBSCAN∗, we can generate the reachability plot directly
from the input tree by running Prim’s algorithm on the tree edges
starting from an arbitrary vertex [7]. This approach takes 𝑂 (𝑛 log𝑛)
work and is also hard to parallelize efficiently, since Prim’s algorithm
is inherently sequential.

Our new parallel algorithm uses a top-down approach to generate
the dendrogram and reachability plot given a weighted tree. Our
algorithm takes 𝑂 (𝑛 log𝑛) expected work and 𝑂 (log2 𝑛 log log𝑛)
depth with high probability, and hence is work-efficient.

4.1 Ordered Dendrogram
We discuss the relationship between the dendrogram and reach-

ability plot, which are both used in HDBSCAN∗. It is known [53]
that a reachability plot can be converted into a dendrogram using
a linear-work algorithm for Cartesian tree construction [26], which
can be parallelized [56]. However, converting in the other direction,
which is what we need, is more challenging because the children
in dendrogram nodes are unordered, and can correspond to many
possible sequences, only one of which corresponds to the traversal
order in Prim’s algorithm that defines the reachability plot.

Therefore, for a specific starting point 𝑠, we define the ordered
dendrogram of 𝑠, which is a dendrogram where its in-order traversal
corresponds to the reachability plot starting at point 𝑠. With this
definition, there is a one-to-one correspondence between a ordered
dendrogram and a reachability plot, and there are a total of 𝑛 pos-
sible ordered dendrograms and reachability plots for an input of
size 𝑛. Then, a reachability plot is just the in-order traversal of the
leaves of an ordered dendrogram, and an ordered dendrogram is the
corresponding Cartesian tree for the reachability plot.

4.2 A Novel Top-Down Algorithm
We introduce a novel work-efficient parallel algorithm to com-

pute a dendrogram, which can be modified to compute an ordered
dendrogram and its corresponding reachability plot.
Warm-up. As a warm-up, we first propose a simple top-down algo-
rithm for constructing the dendrogram, which does not quite give
us the desired work and depth bounds. We first generate an Euler
tour on the input tree [38]. Then, we delete the heaviest edge, which
can be found in linear work and 𝑂 (1) depth by checking all edges.
By definition, this edge will be the root of the dendrogram, and re-
moving this edge partitions the tree into two subtrees corresponding
to the two children of the root. We then convert our original Euler

sa

d

b

c

e g

f

i

h

b-c
d-e

s b-d

a-d

b c

a

d b

i

h-i

e-gs b-d

a-d
c h

a

d b e g

f

(a) (b) (c)

e-g
f-g

e g

f

f-h
he

b-c
d-e i

h-i

f-h
f-g

Figure 5: An example of the dendrogram construction algorithm on the
tree from Figure 1. The input tree is shown in (a). The 4 heavy edges are
in bold. We have three subproblems—one for the heavy edges and two
for the light edges. The dendrograms for the subproblems are generated
recursively, as shown in (b). The edge labeled on an internal node is the
edge whose removal splits a cluster into the two clusters represented by
its children. As shown in (c), we insert the roots of the dendrograms
for the light edges at the corresponding leaf nodes of the heavy-edge
dendrogram. For the ordered dendrogram, the in-order traversal of the
leaves corresponds to the reachability plot shown in Figure 1 when the
starting point 𝑠 = 𝑎.
tour into two Euler tours, one for each subtree, which can be done
in constant work and depth by updating a few pointers. Next, we
partition our list of edges into two lists, one for each subproblem.
This can be done by applying list ranking on each Euler tour to de-
termine appropriate offsets for each edge in a new array associated
with its subproblem. This step takes linear work and has 𝑂 (log𝑛)
depth [38]. Finally, we solve the two subproblems recursively.

Although the algorithm is simple, there is no guarantee that the
subproblems are of equal size. In the worst case, one of the subprob-
lems could contain all but one edges (e.g., if the tree is a path with
edge weights in increasing order), and the algorithm would require
𝑂 (𝑛) levels of recursion. The total work would then be 𝑂 (𝑛2) and
depth would be 𝑂 (𝑛 log𝑛), which is clearly undesirable.
An algorithm with 𝑂 (log𝑛) levels of recursion. We now describe
a top-down approach that guarantees 𝑂 (log𝑛) levels of recursion.
We define the heavy edges of a tree with 𝑛 edges to be the 𝑛/2 (or
any constant fraction of 𝑛) heaviest edges and the light edges of a
tree to be the remaining edges. Rather than using a single edge to
partition the tree, we use the 𝑛/2 heaviest edges to partition the tree.
The heavy edges correspond to the part of the dendrogram closer to
the root, which we refer to as the top part of the dendrogram, and the
light edges correspond to subtrees of the top part of the dendrogram.
Therefore, we can recursively construct the dendrogram on the heavy
edges and the dendrograms on the light edges in parallel. Then, we
insert the roots of the dendrograms for the light edges into the leaf
nodes of the heavy-edge dendrogram. The base case is when there is
a single edge, from which we can trivially generate a dendrogram.

An example is shown in Figure 5. We first construct the Euler tour
of the input tree (Figure 5a). Then, we find the median edge based on
edge weight, separate the heavy and light edges and compact them
into a heavy-edge subproblem and multiple light-edge subproblems.
For the subproblems, we construct their Euler tours by adjusting
pointers, and mark the position of each light-edge subproblem in
the heavy-edge subproblem where it is detached. Then, recursively
and in parallel, we compute the dendrograms for each subproblem
(Figure 5b). After that, we insert the roots of the light-edge dendro-
grams to the appropriate leaf nodes in the heavy-edge dendrogram,
as marked earlier (Figure 5c).

Figure 5 shows how this algorithm applies to the input in Figure 1
with source vertex 𝑎. The four heaviest edges (𝑏, 𝑐), (𝑑, 𝑒), (𝑓 , ℎ),
and (ℎ, 𝑖) divide the tree into two light subproblems, consisting of
{(𝑎, 𝑑), (𝑑,𝑏)} and {(𝑒, 𝑔), (𝑔, 𝑓)}. The heavy edges form another

8

subproblem. We mark vertices 𝑏 and 𝑒, where the light subproblems
are detached. After constructing the dendrogram for the three sub-
problems, we insert the light dendrograms at leaf nodes 𝑏 and 𝑒, as
shown in Figure 5b. It forms the correct dendrogram in Figure 5c.

We now describe the details of the steps to separate the subprob-
lems and re-insert them into the final dendrogram.
Subproblem Finding. To find the position in the heavy-edge dendro-
gram to insert a light-edge dendrogram at, every light-edge subprob-
lem will be associated with a unique heavy edge. The dendrogram
of the light-edge subproblem will eventually connect to the corre-
sponding leaf node in the heavy-edge dendrogram associated with it.
We first explain how to separate the heavy-edge subproblem and the
light-edge subproblems.

First, we compute the unweighted distance from every point to
the starting point 𝑠 in the tree, and we refer to them as the vertex
distances. For the ordered dendrogram, 𝑠 is the starting point of
the reachability plot, whereas 𝑠 can be an arbitrary vertex if the
ordering property is not needed. We compute the vertex distances
by performing list ranking on the tree’s Euler tour rooted at 𝑠. These
distances can be computed by labeling each downward edge (away
from 𝑠) in the tree with a value of 1 and each upward edge (towards
𝑠) in the tree with a value of −1, and running list ranking on the
edges. The vertex distances are computed only once.

We then identify the light-edge subproblems in parallel by using
the vertex distances. For each light edge (𝑢, 𝑣), we find an adjacent
edge (𝑤,𝑢) such that 𝑤 has smaller vertex distance than both 𝑢 and
𝑣 . We call (𝑤,𝑢) the predecessor edge of (𝑢, 𝑣). Each edge can only
have one predecessor edge (an edge adjacent to 𝑠 will choose itself
as the predecessor). In a light-edge subproblem not containing the
starting vertex 𝑠, the predecessor of each light edge will either be
a light edge in the same light-edge subproblem, or a heavy edge.
The edges in each light-edge subproblem will form a subtree based
on the pointers to predecessor edges. We can obtain the Euler tour
of each light-edge subproblem by adjusting pointers of the original
Euler tour. The next step is to run list ranking to propagate a unique
label (the root’s label of the subproblem subtree) of each light-edge
subproblem to all edges in the same subproblem. To create the Euler
tour for the heavy subproblem, we contract the subtrees for the
light-edge subproblems: for each light-edge subproblem, we map
its leaves to its root using a parallel hash table. Now each heavy
edge adjacent to a light-edge subproblem leaf can connect to the
heavy edge adjacent to the light-edge subproblem root by looking it
up in the hash table. The Euler tour for the heavy-edge subproblem
can now be constructed by adjusting pointers. We assign the label
of the heavy-edge subproblem root to all of the heavy edges in
parallel. Then, we semisort the labeled edges to group edges of
the same light-edge subproblems and the heavy-edge subproblem.
Finally, we recursively compute the dendrograms on the light-edge
subproblems and the heavy-edge subproblem. In the end, we connect
the light-edge dendrogram for each subproblem to the heavy-edge
dendrogram leaf node corresponding to the shared endpoint between
the light-edge subproblem and its unique heavy predecessor edge.
For the light-edge subproblem containing the starting point 𝑠, we
simply insert its light-edge dendrogram into the left-most leaf node
of the heavy-edge dendrogram.

Consider the example in Figure 5a. The heavy-edge subprob-
lem contains edges {(𝑏, 𝑐), (𝑑, 𝑒), (𝑓 , ℎ), (ℎ, 𝑖)}, and its dendrogram
is shown in Figure 5b. For the light-edge subproblem {(𝑒, 𝑔), (𝑔, 𝑓)},
(𝑒, 𝑔) has heavy predecessor edge (𝑑, 𝑒), and (𝑔, 𝑓) has light pre-
decessor edge (𝑒, 𝑔). The unique heavy edge associated with the
light-edge subproblem is hence (𝑑, 𝑒), with which it shares vertex 𝑒.
Hence, we insert the light-edge dendrogram for the subproblem into
leaf node 𝑒 in the heavy-edge dendrogram, as shown in Figure 5b.
The light-edge subproblem containing {(𝑎, 𝑑), (𝑑, 𝑏)} contains the
starting point 𝑠 = 𝑎, and so we insert its dendrogram into the leftmost
leaf node 𝑏 of the heavy-edge dendrogram, as shown in Figure 5b.

We first show that our algorithm correctly computes a dendrogram,
and analyze its cost bounds (Theorem 4.1). Then, we describe and
analyze additional steps needed to generate an ordered dendrogram
and obtain a reachability plot from it (Theorem 4.2).

Theorem 4.1. Given a weighted spanning tree with 𝑛 vertices,
we can compute a dendrogram in 𝑂 (𝑛 log𝑛) expected work and
𝑂 (log2 𝑛 log log𝑛) depth with high probability.

Proof. We first prove that our algorithm correctly produces a dendro-
gram. In the base case, we have one edge (𝑢, 𝑣), and the algorithm
produces a tree with a root representing (𝑢, 𝑣), and with 𝑢 and 𝑣 as
children of the root, which is trivially a dendrogram. We now in-
ductively hypothesize that recursive calls to our algorithm correctly
produce dendrograms. The heavy subproblem recursively computes
a top dendrogram consisting of all of the heavy edges, and the light
subproblems form dendrograms consisting of light edges. We re-
place the leaf vertices in the top dendrogram associated with light
subproblems by the roots of the dendrograms on light edges. Since
the edges in the heavy subproblem are heavier than all edges in
light subproblems, and are also ancestors of the light edges in the
resulting tree, this gives a valid dendrogram.

We now analyze the cost of the algorithm. To generate the Euler
tour at the beginning, we first sort the edges and create an adja-
cency list representation, which takes 𝑂 (𝑛 log𝑛) work and 𝑂 (log𝑛)
depth [19]. Next, we root the tree, which can be done by list ranking
on the Euler tour of the tree. Then, we compute the vertex distances
to 𝑠 using another round of list ranking based on the rooted tree.

There are 𝑂 (log𝑛) recursive levels since the subproblem sizes
are at most half of the original problem. We now show that each
recursive level takes linear expected work and polylogarithmic depth
with high probability. Note that we cannot afford to sort the edges
on every recursive level, since that would take 𝑂 (𝑛 log𝑛) work per
level. However, we only need to know which edges are heavy and
which are light, and so we can use parallel selection [38] to find the
median and partition the edges into two sets. This takes 𝑂 (𝑛) work
and 𝑂 (log𝑛 log log𝑛) depth. Identifying predecessor edges takes a
total of 𝑂 (𝑛) work and 𝑂 (1) depth: first, we find and record for each
vertex its edge where the other endpoint has a smaller vertex distance
than it (using WRITEMIN); then, the predecessor of each edge can
be found by checking the recorded edge for its endpoint with smaller
vertex distance. We then use list ranking to assign labels to each
subproblem, which takes 𝑂 (𝑛) work and 𝑂 (log𝑛) depth [38]. The
hash table operations to contract and look up the light-edge subprob-
lems contribute 𝑂 (𝑛) work and 𝑂 (log𝑛) depth with high probability.
The semisort to group the subproblems takes 𝑂 (𝑛) expected work
and 𝑂 (log𝑛) depth with high probability. Attaching the light-edge

9

dendrograms into the heavy-edge dendrogram takes 𝑂 (𝑛) work and
𝑂 (1) depth across all subproblems. Multiplying the bounds by the
number of levels of recursion proves the theorem. □

Theorem 4.2. Given a starting vertex 𝑠, we can generate an ordered
dendrogram and reachability plot in the same cost bounds as in
Theorem 4.1.
Proof. We have computed the vertex distances of all vertices from
𝑠. When generating the ordered dendrogram and constructing each
internal node of the dendrogram corresponding to an edge (𝑢, 𝑣),
and without loss of generality let 𝑢 have a smaller vertex distance
than 𝑣 , our algorithm puts the result of the subproblem attached to 𝑢
in the left subtree, and that of 𝑣 in the right subtree. This additional
comparison does not increase the work and depth of our algorithm.

Our algorithm recursively builds ordered dendrograms on the
heavy-edge subproblem and on each of the light-edge subproblems,
which we assume to be correct by induction. The base case is a
single edge (𝑢, 𝑣), and without loss of generality let 𝑢 have a smaller
vertex distance than 𝑣 . Then, the dendrogram will contain a root node
representing edge (𝑢, 𝑣), with𝑢 as its left child and 𝑣 as its right child.
Prim’s algorithm would visit 𝑢 before 𝑣 , and the in-order traversal of
the dendrogram does as well, so this is an ordered dendrogram.

We now argue that the way that light-edge dendrograms are at-
tached to the leaves of the heavy-edge dendrogram correctly pro-
duces an ordered dendrogram. First, consider a light-edge subprob-
lem that contains the source vertex 𝑠. In this case, its dendrogram
is attached as the leftmost leaf of the heavy-edge dendrogram, and
will be the first to be traversed in the in-order traversal. The vertices
in the light-edge subproblem form a connected component 𝐴. They
will be traversed before any other vertices in Prim’s algorithm be-
cause all incident edges that leave 𝐴 are heavy edges, and thus are
heavier than any edge in 𝐴. Therefore, vertices outside of 𝐴 can only
be visited after all vertices in 𝐴 have been visited, which correctly
corresponds to the in-order traversal.

Next, we consider the case where the light-edge subproblem does
not contain 𝑠. Let (𝑢, 𝑣) be the predecessor edge of the light-edge
subproblem, and let 𝐴 be the component containing the edges in the
light-edge subproblem (𝑣 is a vertex in 𝐴). Now, consider a different
light-edge subproblem that does not contain 𝑠, whose predecessor
edge is (𝑥,𝑦), and let 𝐵 be the component containing the edges in
this subproblem (𝑦 is a vertex in 𝐵). By construction, we know that
𝐴 is in the right subtree of the dendrogram node corresponding to
edge (𝑢, 𝑣) and 𝐵 is in the right subtree of node corresponding to
(𝑥,𝑦). The ordering between 𝐴 and 𝐵 is correct as long as they are
on different sides of either node (𝑢, 𝑣) or node (𝑥,𝑦). For example, if
𝐵 is in the left subtree of node (𝑢, 𝑣), then its vertices appear before
𝐴 in the in-order traversal of the dendrogram. By the inductive
hypothesis on the heavy-edge subproblem, in Prim’s order, 𝐵 will
be traversed before (𝑢, 𝑣), and (𝑢, 𝑣) is traversed before 𝐴. We can
apply a similar argument to all other cases where 𝐴 and 𝐵 are on
different sides of either node (𝑢, 𝑣) or node (𝑥,𝑦).

We are concerned with the case where 𝐴 and 𝐵 are both in the
right subtrees of the nodes representing their predecessor edges.
We prove by contradiction that this cannot happen. Without loss of
generality, suppose node (𝑥,𝑦) is in the right subtree of node (𝑢, 𝑣),
and let both 𝐴 and 𝐵 be in the right subtree of (𝑥,𝑦). There exists a
lowest common ancestor (LCA) node (𝑥 ′, 𝑦′) of 𝐴 and 𝐵. (𝑥 ′, 𝑦′)

must be a heavy edge in the right subtree of (𝑥,𝑦). By properties of
the LCA, 𝐴 and 𝐵 are in different subtrees of node (𝑥 ′, 𝑦′). Without
loss of generality, let 𝐴 be in the left subtree. Now consider edge
(𝑥 ′, 𝑦′) in the tree. By the inductive hypothesis on the heavy-edge
dendrogram, in Prim’s traversal order, we must first visit the leaf
that 𝐴 attaches to (and hence 𝐴) before visiting (𝑥 ′, 𝑦′), which must
be visited before the leaf that 𝐵 attaches to (and hence 𝐵). On the
other hand, edge (𝑥,𝑦) is also along the same path since it is the
predecessor of 𝐵. Thus, we must either have (𝑥 ′, 𝑦′) in (𝑥,𝑦)’s left
subtree or (𝑥,𝑦) in (𝑥 ′, 𝑦′)’s right subtree, which is a contradiction
to (𝑥 ′, 𝑦′) being in the right subtree of (𝑥,𝑦).

We have shown that given any two light-edge subproblems, their
relative ordering after being attached to the heavy-edge dendrogram
is correct. Since the heavy-edge dendrogram is an ordered dendro-
gram by induction, the order in which the light-edge subproblems are
traversed is correct. Furthermore, each light-edge subproblem gen-
erates an ordered dendrogram by induction. Therefore, the overall
dendrogram is an ordered dendrogram.

Once the ordered dendrogram is computed, we can use list ranking
to perform an in-order traversal on the Euler tour of the dendrogram
to give each node a rank, and write them out in order. We then filter
out the non-leaf nodes to to obtain the reachability plot. Both list
ranking and filtering take 𝑂 (𝑛) work and 𝑂 (log𝑛) depth. □

Implementation. In our implementation, we simplify the process
of finding the subproblems by using a sequential procedure rather
than performing parallel list ranking, because in most cases paral-
lelizing over the different subproblems already provides sufficient
parallelism. We set the number of heavy edges to 𝑛/10, which we
found to give better performance in practice, and also preserves
the theoretical bounds. We switch to the sequential dendrogram
construction algorithm when the problem size falls below 𝑛/2.

5 Experiments
Environment. We perform experiments on an Amazon EC2 in-
stance with 2 × Intel Xeon Platinum 8275CL (3.00GHz) CPUs for
a total of 48 cores with two-way hyper-threading, and 192 GB of
RAM. By default, we use all cores with hyper-threading. We use
the g++ compiler (version 7.4) with the -O3 flag, and use Cilk for
parallelism [41]. We do not report times for tests that exceed 3 hours.

We test the following implementations for EMST (note that the
EMST problem does not include dendrogram generation):
• EMST-Naive: The method of creating a graph with the BCCP

edges from all well-separated pairs and then running MST on it.
• EMST-GFK: The parallel GeoFilterKruskal algorithm described

in Section 3.1.2 (Algorithm 2).
• EMST-MemoGFK: The parallel GeoFilterKruskal algorithm with

the memory optimization described in Section 3.1.3 (Algorithm 3).
• EMST-Delaunay: The method of computing an MST on a Delau-

nay triangulation for 2D data sets described in Appendix A.1.
We test the following implementations for HDBSCAN∗:

• HDBSCAN∗-GanTao: The modified algorithm of Gan and Tao
for exact HDBSCAN∗ described in Section 3.2.1.

• HDBSCAN∗-MemoGFK: The HDBSCAN∗ algorithm using our
new definition of well-separation described in Section 3.2.2.
Both HDBSCAN∗-GanTao and HDBSCAN∗-MemoGFK use the

memory optimization described in Section 3.1.3. All HDBSCAN∗

10

running times include constructing an MST of the mutual reachabil-
ity graph and computing the ordered dendrogram. We use a default
value of minPts = 10 (unless specified otherwise), which is also
adopted in previous work [16, 28, 44].

Our algorithms are designed for multicores, as we found that
multicores are able to process the largest data sets in the literature
for these problems (machines with several terabytes of RAM can be
rented at reasonable costs on the cloud). Our multicore implementa-
tions achieve significant speedups over existing implementations in
both the multicore and distributed memory contexts.
Data Sets. We use the synthetic seed spreader data sets produced by
the generator in [27]. It produces points generated by a random walk
in a local neighborhood (SS-varden). We also use UniformFill that
contains points distributed uniformly at random inside a bounding
hypergrid with side length

√
𝑛 where 𝑛 is the total number of points.

We generated the synthetic data sets with 10 million points (unless
specified otherwise) for dimensions 𝑑 = 2, 3, 5, 7.

We use the following real-world data sets. GeoLife [2, 65] is a
3-dimensional data set with 24, 876, 978 data points. This data set
contains user location data (longitude, latitude, and altitude), and is
extremely skewed. Household [3, 5] is a 7-dimensional data set with
2, 049, 280 points representing electricity consumption measurements
in households. HT [4, 37] is a 10-dimensional data set with 928, 991
data points containing home sensor data. CHEM [1, 24] is a 16-
dimensional data set with 4, 208, 261 data points containing chemical
sensor data. All of the data sets fit in the RAM of our machine.
Comparison with Previous Implementations. For EMST, we tested
the sequential Dual-Tree Boruvka algorithm of March et al. [43] (part
of mlpack), and our single-threaded EMST-MEMOGFK times are
0.89–4.17 (2.44 on average) times faster. Raw running times for
mlpack are presented in Table 3. We also tested McInnes and
Healy’s sequential HDBSCAN∗ implementation which is based on
Dual-Tree Boruvka [44]. We were unable to run their code on our
data sets with 10 million points in a reasonable amount of time. On
a smaller data set with 1 million points (2D-SS-varden-1M), their
code takes around 90 seconds to compute the MST and dendrogram,
which is 10 times slower than our HDBSCAN∗-MemoGFK imple-
mentation on a single thread, due to their code using Python and
having fewer optimizations. We observed a similar trend on other
data sets for McInnes and Healy’s implementation.

The GFK algorithm implementation for EMST of [17] in the
Stann library supports multicore execution using OpenMP. We
found that, in parallel, their GFK implementation always runs much
slower when using all 48 cores than running sequentially, and so
we decided to not include their parallel running times in our experi-
ments. In addition, our own sequential implementation of the same
algorithm is 0.79–2.43x (1.23x on average) faster than theirs, and
so we parallelize our own version as a baseline. We also tested the
multicore implementation of the parallel OPTICS algorithm in [51]
using all 48 cores on our machine. Their code exceeded our 3-hour
time limit for our data sets with 10 million points. On a smaller
data set of 1 million points (2D-SS-varden-1M), their code took
7988.52 seconds, whereas our fastest parallel implementations take
only a few seconds. We also compared with the parallel HDBSCAN∗

code by Santos et al. [54], which mainly focuses on approximate
HDBSCAN∗ in distributed memory. As reported in their paper, for

Speedup over Best Sequential Self-relative Speedup
Method Range Average Range Average

EMST-Naive 3.51-10.69x 6.90x 16.79-33.47x 24.15x
EMST-GFK 1.52-7.01x 3.60x 8.11-11.51x 9.08x
EMST-MemoGFK 14.61-55.89x 31.31x 14.61-55.89x 31.31x
Delaunay 14.12-16.64x 15.38x 33.11-34.54x 33.82x
HDBSCAN∗-MemoGFK 11.13-46.69x 26.29x 11.13-46.69x 26.29x
HDBSCAN∗-GanTao 4.29-35.14x 13.76x 8.23-40.32x 20.97x

Table 2: Speedup over the best sequential algorithm as well as the self-
relative speedup on 48 cores.

the HT data set with minPts = 30, their code on 60 cores takes
42.54 and 31450.89 minutes to build the approximate and exact
MST, respectively, and 124.82 minutes to build the dendrogram. In
contrast, our fastest implementation using 48 cores builds the MST
in under 3 seconds, and the dendrogram in under a second.

Overall, we found the fastest sequential methods for EMST
and HDBSCAN∗ to be our EMST-MemoGFK and HDBSCAN*-
MemoGFK methods running on 1 thread. Therefore, we also based
our parallel implementations on these methods.
Performance of Our Implementations. Raw running times for our
implementations are presented in Tables 4 and 5 in the Appen-
dix. Table 2 shows the self-relative speedups and speedups over
the fastest sequential time of our parallel implementations on 48
cores. Figures 6 and 7 show the parallel speedup as a function of
thread count for our implementations of EMST and HDBSCAN∗

with minPts = 10, respectively, against the fastest sequential times.
For most data sets, we see additional speedups from using hyper-
threading compared to just using a single thread per core. A decom-
position of parallel timings for all of our implementations on several
data sets is presented in Figure 8.
EMST Results. In Figure 6, we see that our fastest EMST imple-
mentations (EMST-MemoGFK) achieve good speedups over the
best sequential times, ranging from 14.61–55.89x on 48 cores with
hyper-threading. On the lower end, 10D-HT-0.93M has a speedup of
14.61x (Figure 6k). This is because for a small data set, the total work
done is small and the parallelization overhead becomes prominent.

EMST-MemoGFK significantly outperforms EMST-GFK and
EMST-Naive by up to 17.69x and 8.63x, respectively, due to its
memory optimization, which reduces memory traffic. We note that
EMST-GFK does not get good speedup, and is slower than EMST-
Naive in all subplots of Figure 6. This is because the WSPD in-
put to EMST-GFK (𝑆 in Algorithm 2) needs to store references to
the well-separated pair as well as the BCCP points and distances,
whereas EMST-Naive only needs to store the BCCP points and
distances. This leads to increased memory traffic for EMST-GFK
for operations on 𝑆 and its subarrays, which outweighs its advan-
tage of computing fewer BCCPs. This is evident from Figure 8,
which shows that EMST-GFK spends more time in WSPD, but
less time in Kruskal compared to EMST-Naive. EMST-MemoGFK
spends the least amount of time in WSPD due to its pruning op-
timizations, while spending a similar amount of time in Kruskal
as EMST-GFK. Finally, the EMST-Delaunay implementation per-
forms reasonably well, being only slightly (1.22–1.57x) slower than
EMST-MemoGFK; however, it is only applicable for 2D data sets.
HDBSCAN∗ Results. In Figure 7, we see that our HDBSCAN∗-
MemoGFK method achieves good speedups over the best sequential
times, ranging from 11.13–46.69x on 48 cores. Similar to EMST,
we observe a similar lower speedup for 10D-HT-0.93M due to its

11

1 24 48 48h
num-threads

0
5

10
15
20
25

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (3
1.

54
 s) (a) 2D-UniformFill-10M

1 24 48 48h
num-threads

0
10
20
30
40

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (2
30

.9
3

s)

(c) 5D-UniformFill-10M

1 24 48 48h
num-threads

0

5

10

15

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (2
7.

48
 s) (e) 2D-SS-varden-10M

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (9
6.

19
 s) (g) 5D-SS-varden-10M

1 24 48 48h
num-threads

0
5

10
15
20
25

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (1
17

.3
1

s)

(i) 3D-GeoLife-24.9M

1 24 48 48h
num-threads

0

5

10

15

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (5
.1

7
s) (k) 10D-HT-0.93M

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (6
7.

80
 s) (b) 3D-UniformFill-10M

1 24 48 48h
num-threads

0

20

40

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (1
58

5.
65

 s)

(d) 7D-UniformFill-10M

1 24 48 48h
num-threads

0
5

10
15
20
25

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (4
8.

72
 s) (f) 3D-SS-varden-10M

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (2
05

.1
5

s)

(h) 7D-SS-varden-10M

1 24 48 48h
num-threads

0
5

10
15
20
25

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (3
7.

60
 s) (j) 7D-Household-2.05M

1 24 48 48h
num-threads

0
10
20
30
40

sp
ee

du
p

ov
er

 1
-th

re
ad

EM
ST

-M
em

oG
FK

 (8
21

.8
1

s)

(l) 16D-CHEM-4.2M

EMST-Naive EMST-GFK EMST-MemoGFK EMST-Delaunay

Figure 6: Speedup of EMST implementations over the best serial baselines vs. thread count. The best serial baseline and its running time for each data
set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with hyper-threading.

1 24 48 48h
num-threads

0

5

10

15

20

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (1
97

.5
5

s) (a) 2D-UniformFill-10M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (1
21

7.
87

 s
) (c) 5D-UniformFill-10M

(eps: ,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (1
03

.7
3

s) (e) 2D-SS-varden-10M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0

10

20

30
sp

ee
du

p
ov

er
 1

-th
re

ad
HD

B*
-M

em
oG

FK
 (7

16
.8

1
s) (g) 5D-SS-varden-10M

(eps: ,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (6
87

.7
5

s) (i) 3D-GeoLife-24.9M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0.0
2.5
5.0
7.5

10.0
12.5

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (1
5.

74
 s

)

(k) 10D-HT-0.93M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0
5

10
15
20

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (3
21

.9
7

s) (b) 3D-UniformFill-10M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0
5

10
15
20
25

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (7
48

7.
95

 s
) (d) 7D-UniformFill-10M

(eps: ,minpts:10)

1 24 48 48h
num-threads

0
5

10
15
20

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (1
54

.3
1

s) (f) 3D-SS-varden-10M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0
10
20
30
40

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (2
25

3.
38

 s
) (h) 7D-SS-varden-10M

(eps: ,minpts:10)

1 24 48 48h
num-threads

0
5

10
15
20
25

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (9
3.

23
 s

) (j) 7D-Household-2.05M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
-th

re
ad

HD
B*

-M
em

oG
FK

 (1
16

5.
20

 s
) (l) 16D-CHEM-4.2M

(eps: ,minpts:10)

HDBSCAN*-MemoGFK HDBSCAN*-GanTao

Figure 7: Speedup of implementations for HDBSCAN∗ MST generation over the best serial baselines vs. thread count using minPts = 10. The best
serial baseline and its running time for each data set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with hyper-threading.

Figure 8: Decomposition of running times for constructing the EMST and HDBSCAN∗ MST on various data sets using all 48 cores with hyper-
threading. minPts = 10 for HDBSCAN∗. In the legend, "dendrogram" refers to computing the ordered dendrogram; "delaunay" refers to computing
the Delaunay triangulation; "kruskal" refers to Kruskal’s MST algorithm; "wspd" refers to computing the WSPD decomposition, or the sum of
WSPD tree traversal times across rounds; "core-dist" refers to computing core distances of all points; and "build-tree" refers to building a 𝑘d-tree on
all points.

12

small size, and observe higher speedups for larger data sets. The
dendrogram construction takes at least 50% of the total time for
Figures 7a, b, and e–h, and hence has a large impact on the overall
scalability. We discuss the dendrogram scalability separately.

We find that HDBSCAN∗-MemoGFK consistently outperforms
HDBSCAN∗-GanTao due to having a fewer number of well-separated
pairs (2.5–10.29x fewer) using the new definition of well-separation.
This is also evident in Figure 8, where we see that HDBSCAN∗-
MemoGFK spends much less time than HDBSCAN∗-GanTao in
WSPD computation.

We tried varying minPts over a range from 10 to 50 for our
HDBSCAN∗ implementations and found just a moderate increase in
the running time for increasing minPts.
MemoGFK Memory Usage. Overall, the MemoGFK method for
both EMST and HDBSCAN∗ reduces memory usage by up to 10x
compared to materializing all WSPD pairs in a naive implementation.
Dendrogram Results. We separately report the performance of
our parallel dendrogram algorithm in Figure 9, which shows the
speedups and running times on all of our data sets. We see that
the parallel speedup ranges from 5.69–49.74x (with an average
of 17.93x) for the HDBSCAN∗ MST with minPts =10, and 5.35–
52.58x (with an average 20.64x) for single-linkage clustering, which
is solved by generating a dendrogram on the EMST. Dendrogram
construction for single-linkage clustering shows higher scalability
because the heavy edges are more uniformly distributed in space,
which creates a larger number of light-edge subproblems and in-
creases parallelism. In contrast, for HDBSCAN∗, which has a higher
value of minPts, the sparse regions in the space tend to have clus-
ters of edges with large weights even if some of them have small
Euclidean distances, since these edges have high mutual reachability
distances. Therefore, these heavy edges are less likely to divide up
the edges into a uniform distribution of subproblems in the space,
leading to lower parallelism. On the other hand, we observe that
across all data sets, the dendrogram for single-linkage clustering
takes an average of 16.44 seconds, whereas the dendrogram for
HDBSCAN∗ takes an average of 9.27 seconds. This is because the
single-linkage clustering generates more light-edge subproblems and
hence requires more work. While it is possible to tune the fraction
of heavy edges for different values of minPts, we found that using
𝑛/10 heavy edges works reasonably well in all cases.

6 Conclusion
We presented practical and theoretically-efficient parallel algo-

rithms of EMST and HDBSCAN∗. We also presented a work-efficient
parallel algorithm for computing an ordered dendrogram and reacha-
bility plot. Finally, we showed that our optimized implementations
achieve good scalability and outperform state-of-the-art implemen-
tations for EMST and HDBSCAN∗.
Acknowledgements. We thank Pilar Cano for helpful discussions.
This research was supported by DOE Early Career Award #DE-
SC0018947, NSF CAREER Award #CCF-1845763, Google Faculty
Research Award, DARPA SDH Award #HR0011-18-3-0007, and
Applications Driving Architectures (ADA) Research Center, a JUMP
Center co-sponsored by SRC and DARPA.

0 10 20 30 40 50
Self-Relative Speedup

16D-CHEM-4.2M
10D-HT-0.93M

7D-HouseHold-2M
3D-GeoLife-24.9M
7D-SS-varden-10M
5D-SS-varden-10M
3D-SS-varden-10M
2D-SS-varden-10M
7D-UniformFill-10M
5D-UniformFill-10M
3D-UniformFill-10M
2D-UniformFill-10M

16.24x, 3.35s

5.69x, 0.53s

12.38x, 0.56s

27.73x, 9.39s

49.74x, 40.33s

32.78x, 16.41s

10.93x, 3.93s

10.25x, 3.65s

14.26x, 8.22s

12.85x, 8.60s

10.99x, 9.01s

11.35x, 7.26s

25.02x, 15.42s

7.57x, 1.23s

5.35x, 2.96s

32.83x, 40.24s

52.58x, 53.01s

40.23x, 34.24s

11.48x, 5.73s

13.38x, 13.39s

10.27x, 5.46s

7.93x, 5.96s

14.30x, 5.84s

26.76x, 13.75s

Dendrogram Speedup and Running Time (s)

Single-Linkage
Clustering
HDBSCAN*
(minPts=10)

Figure 9: Self-relative speedups and times for ordered dendrogram
computation for single-linkage clustering and HDBSCAN∗ (minPts =

10). The 𝑥-axis indicates the self-relative speedup on 48 cores with
hyper-threading. The speedup and time is shown at the end of each bar.

References
[1] [n.d.]. CHEM Dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+

under+dynamic+gas+mixtures.
[2] [n.d.]. GeoLife Dataset. https://www.microsoft.com/en-us/research/publication/

geolife-gps-trajectory-dataset-user-guide/.
[3] [n.d.]. Household Dataset. https://archive.ics.uci.edu/ml/datasets/individual+

household+electric+power+consumption.
[4] [n.d.]. HT Dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+

home+activity+monitoring.
[5] [n.d.]. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.
[6] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl.

1991. Euclidean minimum spanning trees and bichromatic closest pairs. Discrete
& Computational Geometry (1991), 407–422.

[7] Mihael Ankerst, Markus Breunig, H. Kriegel, and Jörg Sander. 1999. OPTICS: Or-
dering Points to Identify the Clustering Structure. In ACM SIGMOD International
Conference on Management of Data. 49–60.

[8] Sunil Arya and David M. Mount. 2016. A Fast and Simple Algorithm for Comput-
ing Approximate Euclidean Minimum Spanning Trees. In ACM-SIAM Symposium
on Discrete Algorithms. 1220–1233.

[9] Franz Aurenhammer. 1991. Voronoi diagrams—a survey of a fundamental geo-
metric data structure. ACM Computing Surveys (CSUR) 23, 3 (1991), 345–405.

[10] Bentley and Friedman. 1978. Fast Algorithms for Constructing Minimal Spanning
Trees in Coordinate Spaces. IEEE Trans. Comput. C-27, 2 (Feb 1978), 97–105.

[11] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.
Internally Deterministic Parallel Algorithms Can Be Fast. In ACM SIGPLAN
Symposium on Proceedings of Principles and Practice of Parallel Programming
(PPoPP). 181–192.

[12] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions.
J. ACM 21, 2 (April 1974), 201–206.

[13] Paul B Callahan. 1993. Optimal parallel all-nearest-neighbors using the well-
separated pair decomposition. In IEEE Symposium on Foundations of Computer
Science (FOCS). 332–340.

[14] Paul B. Callahan and S. Rao Kosaraju. 1993. Faster Algorithms for Some Geomet-
ric Graph Problems in Higher Dimensions. In ACM-SIAM Symposium on Discrete
Algorithms. 291–300.

[15] Paul B. Callahan and S. Rao Kosaraju. 1995. A Decomposition of Multidimen-
sional Point Sets with Applications to k-Nearest-Neighbors and n-Body Potential
Fields. J. ACM 42, 1 (1995), 67–90.

[16] Ricardo Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. 2015. Hierar-
chical Density Estimates for Data Clustering, Visualization, and Outlier Detection.
ACM Transactions on Knowledge Discovery from Data (TKDD), Article 5 (2015),
5:1–5:51 pages.

[17] Samidh Chatterjee, Michael Connor, and Piyush Kumar. 2010. Geometric Min-
imum Spanning Trees with GeoFilterKruskal. In International Symposium on
Experimental Algorithms (SEA), Vol. 6049. 486–500.

[18] Danny Z. Chen, Michiel Smid, and Bin Xu. 2005. Geometric Algorithms for
Density-Based Data Clustering. International Journal of Computational Geometry
& Applications 15, 03 (2005), 239–260.

[19] Richard Cole. 1988. Parallel Merge Sort. SIAM J. Comput. 17, 4 (Aug. 1988),
770–785.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3. ed.). MIT Press.

[21] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008.
Computational Geometry: Algorithms and Applications. Springer-Verlag.

13

https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
http://archive.ics.uci.edu/ml

[22] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. 2019. Faster DB-scan and
HDB-scan in Low-Dimensional Euclidean Spaces, In International Symposium on
Algorithms and Computation (ISAAC). International Journal of Computational
Geometry & Applications 29, 01, 21–47.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Discover-
ing Clusters in Large Spatial Databases with Noise. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 226–231.

[24] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. 2015. Reser-
voir computing compensates slow response of chemosensor arrays exposed to fast
varying gas concentrations in continuous monitoring. Sensors and Actuators B:
Chemical 215 (2015), 618–629.

[25] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1976. An
algorithm for finding best matches in logarithmic expected time. ACM Trans.
Math. Software 3, 3 (7 1976), 209–226.

[26] Harold N. Gabow, Jon L. Bentley, and Robert E. Tarjan. 1984. Scaling and related
techniques for geometry problems. In ACM Symposium on Theory of Computing
(STOC). 135–143.

[27] Junhao Gan and Yufei Tao. 2017. On the Hardness and Approximation of Eu-
clidean DBSCAN. ACM Transactions on Database Systems (TODS) 42, 3 (2017),
14:1–14:45.

[28] Junhao Gan and Yufei Tao. 2018. Fast Euclidean OPTICS with Bounded Preci-
sion in Low Dimensional Space. In ACM SIGMOD International Conference on
Management of Data. 1067–1082.

[29] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant time
parallel algorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS). 698–710.

[30] Markus Götz, Christian Bodenstein, and Morris Riedel. 2015. HPDBSCAN:
Highly Parallel DBSCAN. In MLHPC. Article 2, 2:1–2:10 pages.

[31] John C. Gower and Gavin J. S. Ross. 1969. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 18, 1 (1969), 54–64.

[32] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel
Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 24–34.

[33] Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. 2002. Higher
order Delaunay triangulations. Computational Geometry 23, 1 (2002), 85–98.

[34] Ade Gunawan. 2013. A faster algorithm for DBSCAN. Master’s thesis, Eindhoven
University of Technology.

[35] William Hendrix, Md Mostofa Ali Patwary, Ankit Agrawal, Wei-keng Liao, and
Alok Choudhary. 2012. Parallel hierarchical clustering on shared memory plat-
forms. In International Conference on High Performance Computing. 1–9.

[36] Xu Hu, Jun Huang, and Minghui Qiu. 2017. A Communication Efficient Par-
allel DBSCAN Algorithm Based on Parameter Server. In ACM Conference on
Information and Knowledge Management (CIKM). 2107–2110.

[37] Ramón Huerta, Thiago Schiavo Mosqueiro, Jordi Fonollosa, Nikolai F. Rulkov, and
Irene Rodríguez-Luján. 2016. Online Humidity and Temperature Decorrelation
of Chemical Sensors for Continuous Monitoring. Chemometrics and Intelligent
Laboratory Systems 157, 169–176.

[38] Joseph Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Profes-
sional.

[39] Richard M. Karp and Vijaya Ramachandran. 1990. Parallel Algorithms for Shared-
Memory Machines. In Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity (A). MIT Press, 869–941.

[40] Der-Tsai Lee. 1982. On k-nearest neighbor Voronoi diagrams in the plane. IEEE
Trans. Comput. 100, 6 (1982), 478–487.

[41] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. J. Supercomputing
51, 3 (2010). Springer.

[42] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. 2016.
NG-DBSCAN: Scalable Density-based Clustering for Arbitrary Data. Proc. VLDB
Endow. 10, 3 (Nov. 2016), 157–168.

[43] William B March, Parikshit Ram, and Alexander G Gray. 2010. Fast Euclidean
minimum spanning tree: algorithm, analysis, and applications. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 603–612.

[44] Leland McInnes and John Healy. 2017. Accelerated hierarchical density clustering.
arXiv preprint arXiv:1705.07321 (2017).

[45] Henning Meyerhenke. 2005. Constructing higher-order Voronoi diagrams in
parallel. In European Workshop on Computational Geometry. 123–126.

[46] Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms.
arXiv:1109.2378 [stat.ML]

[47] Giri Narasimhan and Martin Zachariasen. 2001. Geometric Minimum Spanning
Trees via Well-Separated Pair Decompositions. ACM Journal of Experimental
Algorithmics 6 (2001), 6.

[48] Clark F. Olson. 1995. Parallel algorithms for hierarchical clustering. Parallel
Comput. 21, 8 (1995), 1313 – 1325.

[49] Vitaly Osipov, Peter Sanders, and Johannes Singler. 2009. The Filter-Kruskal
Minimum Spanning Tree Algorithm. In Workshop on Algorithm Engineering and
Experiments (ALENEX). 52–61.

[50] M. Patwary, D. Palsetia, A. Agrawal, W. K. Liao, F. Manne, and A. Choudhary.
2012. A new scalable parallel DBSCAN algorithm using the disjoint-set data struc-
ture. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). 1–11.

[51] M. Patwary, D. Palsetia, A. Agrawal, W. K. Liao, F. Manne, and A. Choudhary.
2013. Scalable parallel OPTICS data clustering using graph algorithmic tech-
niques. In International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). 1–12.

[52] John H. Reif and Sandeep Sen. 1992. Optimal randomized parallel algorithms for
computational geometry. Algorithmica 7, 1 (01 Jun 1992), 91–117.

[53] Jörg Sander, Xuejie Qin, Zhiyong Lu, Nan Niu, and Alex Kovarsky. 2003. Au-
tomatic extraction of clusters from hierarchical clustering representations. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining. 75–87.

[54] J. Santos, T. Syed, M. Coelho Naldi, R. J. G. B. Campello, and J. Sander. 2019.
Hierarchical Density-Based Clustering using MapReduce. IEEE Transactions on
Big Data (2019), 1–1.

[55] Michael Ian Shamos and Hoey Dan. 1975. Closest-point problems. (1975),
151–162.

[56] J. Shun and G. E. Blelloch. 2014. A Simple Parallel Cartesian Tree Algorithm
and its Application to Parallel Suffix Tree Construction. ACM Transactions on
Parallel Computing (TOPC) 1, 1, Article 8 (Oct. 2014), 8:1–8:20 pages.

[57] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2013.
Reducing Contention Through Priority Updates. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). 152–163.

[58] Hwanjun Song and J. Lee. 2018. RP-DBSCAN: A Superfast Parallel DBSCAN
Algorithm Based on Random Partitioning. In ACM SIGMOD International Con-
ference on Management of Data. 1173–1187.

[59] Vijay V. Vazirani. 2010. Approximation Algorithms. Springer Publishing Company,
Incorporated.

[60] P. J. Wan, G. Călinescu, X. Y. Li, and O. Frieder. 2002. Minimum-Energy Broad-
casting in Static Ad Hoc Wireless Networks. Wireless Networks 8, 6 (2002),
607–617.

[61] Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-efficient and practical
parallel DBSCAN. In ACM SIGMOD International Conference on Management
of Data. 2555–2571.

[62] Ying Xu, Victor Olman, and Dong Xu. 2001. Minimum Spanning Trees for Gene
Expression Data Clustering. Genome Informatics 12 (02 2001), 24–33.

[63] Andrew Chi-Chih. Yao. 1982. On Constructing Minimum Spanning Trees in
𝑘-Dimensional Spaces and Related Problems. SIAM J. Comput. 11, 4 (1982),
721–736.

[64] Meichen Yu, Arjan Hillebrand, Prejaas Tewarie, Jil Meier, Bob van Dijk, Piet
Van Mieghem, and Cornelis Jan Stam. 2015. Hierarchical clustering in minimum
spanning trees. Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 2
(2015), 023107.

[65] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning Transporta-
tion Mode from Raw GPS Data for Geographic Applications on the Web. In
International Conference on World Wide Web. 247–256.

14

https://arxiv.org/abs/1109.2378

A Parallel EMST and HDBSCAN∗ in 2D
A.1 Parallel EMST in 2D

The Delaunay triangulation on a set of points in 2D contains
triangles among every triple of points 𝑝1, 𝑝2, and 𝑝3 such that there
are no other points inside the circumcircle defined by 𝑝1, 𝑝2, and
𝑝3 [21].

In two dimensions, Shamos and Hoey [55] show that the EMST
can be computed by computing an MST on the Delaunay triangula-
tion of the points. Parallel Delauny triangulation can be computed
in 𝑂 (𝑛 log𝑛) work and 𝑂 (log𝑛) depth [52], and has 𝑂 (𝑛) edges,
and so the MST computation requires the same work and depth.
We provide an implemenation of this algorithm using the parallel
Delaunay triangulation and parallel implementation of Kruskal’s
algorithm from the Problem Based Benchmark Suite [11].

A.2 Parallel HDBSCAN∗ in 2D
The ordinary Voronoi diagram is a planar subdivision of a space

where points in each cell share the same nearest neighbor. The 𝑘-
order Voronoi Diagram is a generalization of the ordinary Voronoi
diagram, where points in each cell share the same 𝑘-nearest neigh-
bors [9]. A 𝑘-order edge is a closely related concept, and defined to
be an edge where there exists a circle through the two edge endpoints,
such that there are at most 𝑘 points inside the circle [33].

De Berg et al. [22] show that in two dimensions, the MST on
the mutual reachability graph can be computed in 𝑂 (𝑛 log𝑛) work.
Their algorithm computes an MST on a graph containing the 𝑘-order
edges, where 𝑘 = minPts − 3, and where the edges are weighted by
the mutual reachability distances between the two endpoints. They
prove that the MST returned is an MST on the mutual reachability
graph. In this section, we extend their result to the parallel setting.

To parallelize the algorithm, we need to compute the 𝑘-order
edges of the points in parallel. This can be done by first computing
the (𝑘 + 1)-order Voronoi diagram, and then converting the edges in
the Voronoi diagram to 𝑘-order edges, as shown by Gudmundsson
et al. [33]. Specifically, we convert each Voronoi edge into a 𝑘-order
edge by connecting the two points that induce the two cells sharing
the Voronoi edge.

Meyerhenke [45] shows that the family of the order- 𝑗 Voronoi
diagrams for all 1 ≤ 𝑗 ≤ 𝑘 can be computed in 𝑂 (𝑘2𝑛 log𝑛) work
and 𝑂 (𝑘 log2 𝑛) depth. The algorithm works by first computing the
ordinary Voronoi diagram on the input points. Then for each Voronoi
cell, it computes the ordinary Voronoi diagram again on the points
that induce the neighboring cells. This ordinary Voronoi diagram
divides the Voronoi cell into multiple subcells, each of which cor-
responds to a cell in the Voronoi diagram of one higher order. This
process is repeated until obtaining the order-𝑘 Voronoi diagram.
Lee [40] proves that the number of 𝑘-order edges is 𝑂 (𝑛𝑘), and so
we can run parallel MST on these edges in 𝑂 (𝑛𝑘 log𝑛) work and
𝑂 (log𝑛) depth. This gives us the following theorem.

Theorem A.1. Given a set of 𝑛 points in two dimensions, we can
compute the MST on the mutual reachability graph in 𝑂 (minPts2 ·
𝑛 log𝑛) work and 𝑂 (minPts · log2 𝑛) depth.

For computing the ordinary Voronoi diagrams on each step of
Meyerhenke’s algorithm, we use the parallel Delaunay triangulation
implementation from the Problem Based Benchmark Suite [11] and
take the dual of the resulting triangulation. However, we found it to

be significantly slower than our other methods due to high work of
the Voronoi diagram computations.

B Subquadratic-work Parallel EMST
Callahan and Kosaraju’s algorithm [14] first constructs a fair-split

tree 𝑇 and its associated WSPD in 𝑂 (𝑛 log𝑛) work and 𝑂 (log𝑛)
depth [13], which is improved from a previous version with𝑂 (𝑛 log𝑛)
work and 𝑂 (log2 𝑛) depth [15]. Then, the algorithm runs Boruvka’s
steps for ⌈log2 𝑛⌉ rounds. In particular, in each round, the algorithm
finds the lightest outgoing edges only for the components with size
at most 2𝑖+1, and merges the components connected by these edges.
To do so, the algorithm constructs for every component a set of
candidate points that contains the nearest point outside the compo-
nent. The algorithm searches for the candidates top-down on 𝑇 , and
maintains for each node in the tree, a list of all the component s that
can have candidates in the subtree of that node. They ensure the size
of each list is 𝑂 (1) using the WSPD in a manner identical to the
all-nearest-neighbors algorithm of [15]. In this process, they push
the lists down to the leaves of𝑇 , so that the candidates corresponding
to a component will be the leaves that contain that component in
their lists.

Let 𝑃 𝑗 be the set of candidates for the 𝑗’th component. 𝑃 𝑗 is split
into ⌈|𝑃 𝑗 |/2𝑖+1⌉ subsets of size at most 2𝑖+1 each, and the BCCP
is found between each subset and the 𝑗’th component. At round
𝑖, there are 𝑛/2𝑖 components, and the BCCP routine is invoked∑𝑛/2𝑖

𝑗=1 ⌈|𝑃 𝑗 |/2𝑖+1⌉ = 𝑂 (𝑛/2𝑖) times, each with size at most 2𝑖+1.
Therefore, the work for BCCP on each round is𝑂 ((𝑛/2𝑖)𝑇𝑑 (2𝑖+1, 2𝑖+1)).
Since 𝑇𝑑 is at least linear, this dominates the work for each phase.
The total work for BCCP computations is 𝑂 (𝑇𝑑 (𝑛, 𝑛) log𝑛).

In our parallel algorithm, on each round, we perform both the
candidate listing step and BCCP computations in parallel. Listing
candidates for all components can be computed in parallel given a
WSPD. In particular, this uses the top-down computation used for
the all-nearest-neighbor search, parallelized using rake and compress
operations [15], and takes logarithmic depth. Wang et al. [61] show
that BCCP can be computed in parallel in 𝑂 (𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿)
expected work and 𝑂 (log2 𝑛 log∗ 𝑛) depth whp. Both the work and
depth at each round is therefore dominated by computing the BCCPs.
With𝑂 (log𝑛) rounds, this results in𝑂 (𝑇𝑑 (𝑛, 𝑛) log𝑛) expected work
and𝑂 (log3 𝑛 log∗ 𝑛) depth whp, where𝑇𝑑 (𝑛, 𝑛) = 𝑂 (𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿).
This is also the work and depth of the overall EMST algorithm, as
WSPD construction only contributes lower-order terms to the com-
plexity.

Theorem B.1. We can compute the EMST on a set of 𝑛 points
in 𝑑 dimensions in 𝑂 (𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿 log𝑛) expected work and
polylogarithmic depth whp.

C Parallel Approximate OPTICS
Parallel Algorithm. Gan and Tao [28] propose a sequential al-
gorithm to solve the approximate OPTICS problem, defined in
LEMMA 4.2 of their paper [28] (this also gives an approximation
to HDBSCAN∗). The algorithm takes in an additional parameter
𝜌 ≥ 0, which is related to the approximation factor. The algorithm
makes use of the WSPD and uses 𝑂 (𝑛 · minPts2) space, with the
separation constant 𝑠 =

√︁
8/𝜌 . They construct a base graph by adding

15

1 24 48 48h
num-threads

0
5

10
15
20

sp
ee

du
p

ov
er

 1
th

re
ad

-
HD

B*
-M

em
oG

FK
 (9

3.
23

 s)

(a) 7D-Household-2.05M
(eps: ,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 1
th

re
ad

-
HD

B*
-M

em
oG

FK
 (1

16
5.

20
 s)

(b) 16D-CHEM-4.2M
(eps: ,minpts:10)

HDBSCAN*-MemoGFK
HDBSCAN*-GanTao

OPTICS-GaoTaoApprox

Figure 10: Speedup of HDBSCAN∗ MST implementations over the best
serial baselines vs. thread count. The best serial baseline and its running
time for each data set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis
refers to 48 cores with hyper-threading.

𝑂 (minPts2) edges between each well-separated pair, and then com-
pute an MST on the resulting graph. Their algorithm takes𝑂 (𝑛 log𝑛)
work (where the dominant cost is computing the WSPD). We observe
that their algorithm can be parallelized by plugging in parallel WSPD
and MST routines, resulting in an 𝑂 (𝑛 log𝑛) work and 𝑂 (log2 𝑛)
depth algorithm.

In parallel for all well-separated pairs, we compute an approx-
imation to the BCCP for each pair. The algorithm uses the rake-
and-compress algorithm of Callahan and Kosaraju [15] to obtain a
set of coordinates used for approximation for every subset of the
decomposition tree, taking 𝑂 (𝑛) work and 𝑂 (log𝑛) depth. Then,
for every pair in parallel, our algorithm computes the approximate
BCCP in constant work and depth, similar to the sequential algo-
rithm described in [14]. Overall, this step takes linear work and
𝑂 (log𝑛) depth [13, 14].

Similarly to Gan and Tao, we call the pair of points in the ap-
proximate BCCP of each pair the representative points. For each
well-separated pair (𝐴, 𝐵), there are four cases for generating edges
between 𝐴 and 𝐵: (a) if |𝐴| < minPts and |𝐵 | < minPts, then all
pairs of points between 𝐴 and 𝐵 are connected; (b) if |𝐴| ≥ minPts
and |𝐵 | < minPts, then the representative point of 𝐴 is connected
to all points in 𝐵; (c) if |𝐴| < minPts and |𝐵 | ≥ minPts, then the
representative point of 𝐵 is connected to all points in 𝐴; and (d) if
|𝐴| ≥ minPts and |𝐵 | ≥ minPts, then only the representative points
are connected. The weight of the edges are

𝑤 (𝑢, 𝑣) = max{cd(𝑢), cd(𝑣), 𝑑 (𝑢, 𝑣)
1 + 𝜌

}

given representative points 𝑢 and 𝑣 . In our implementation, we sim-
plify the approximate BCCP by simply picking a random pair of
points from each well-separated pair, and also use the parallel MST
algorithm introduced in Sections 3.1.2 and 3.1.3, which computes
the approximate BCCP on the fly for well-separated pairs that
are not yet connected. This will take 𝑂 (minPts2 · 𝑛) work due
to 𝑂 (minPts2) edges produced for each pair, and 𝑂 (log2 𝑛) depth.
This gives us Theorem C.1.

Theorem C.1. Given a set of 𝑛 points, we can compute the MST
required for approximate OPTICS in 𝑂 (𝑛 log𝑛) work, 𝑂 (log2 𝑛)
depth, and 𝑂 (𝑛 · minPts2) space.

Experimental Results. We study the performance of our paral-
lel implementation for the approximate OPTICS problem, which

we call OPTICS-GanTaoApprox. It uses the MemoGFK optimiza-
tion described in Section 3.1.3. We found that when run with a
reasonable parameter of 𝜌 that leads to good clusters, OPTICS-
GanTaoApprox is usually slower than our exact version of the al-
gorithm (HDBSCAN∗-GanTao, described in Section 3.2.1). The
primary reason is that a reasonable 𝜌 value requires a high separa-
tion constant in the WSPD, which produces a very large number of
well-separated pairs, leading to poor performance. In contrast, in
the exact algorithm, a small separation constant (𝑠 = 2) is sufficient
for correctness. Figure 10 shows the speedups on two data sets for
OPTICS-GanTaoApprox with 𝜌 = 0.125 (corresponding to a sepa-
ration constant of 8) compared with other methods. Across all of
the data sets, we found OPTICS-GanTaoApprox to be slower than
HDBSCAN∗-GanTao by a factor of 1.00–1.96x, and slower than
HDBSCAN∗-MemoGFK by a factor of 1.72–7.48x.

D Relationship between EMST and HDBSCAN∗

MST
We now show that for minPts ≤ 3, the EMST is always an MST

of the HDBSCAN∗ base graph by having the same set of edges, but
for higher values of minPts it is possible that this is not the case. For
example, Figure 11 gives an example where EMST is not an MST
of the HDBSCAN∗ base graph when minPts = 4.

Theorem D.1. An EMST is always an MST for the HDBSCAN∗

mutual reachability graph when minPts ≤ 3.

Proof. For minPts ≤ 2, all edges in the HDBSCAN∗ mutual reach-
ability graph have edge weights defined by Euclidean distances, and
so the edge weights are identical. We now discuss the case when
minPts = 3.

Let𝑇 be an EMST, and𝑇 ′ ≠ 𝑇 be an MST in 𝐺𝑀𝑅 . We show that
we can convert 𝑇 ′ to 𝑇 without changing the total weight. Consider
any edge (𝑢, 𝑣) ∈ 𝑇 , but not in𝑇 ′. If we add (𝑢, 𝑣) to𝑇 ′, then we get
a cycle 𝐶.

First, we show that (𝑢, 𝑣) cannot be the unique heaviest edge in
𝐶 under 𝑑𝑚 . Recall that cd(𝑝) is the core distance of a point 𝑝 and
𝑑𝑚 (𝑝, 𝑞) = max{cd(𝑝), cd(𝑞), 𝑑 (𝑝, 𝑞)}. Assume by contradiction
that (𝑢, 𝑣) is the unique heaviest edge in 𝐶 under 𝑑𝑚 .

If 𝑑𝑚 (𝑢, 𝑣) = 𝑑 (𝑢, 𝑣), then (𝑢, 𝑣) is also the unique heaviest edge
in𝐶 in the Euclidean complete graph, and so it cannot be in𝑇 , which
is the EMST. This is a contradiction.

Now we consider the case where 𝑑𝑚 (𝑢, 𝑣) > 𝑑 (𝑢, 𝑣). Without
loss of generality, suppose that 𝑑𝑚 (𝑢, 𝑣) = cd(𝑢). Then 𝑣 must be
𝑢’s unique nearest neighbor; otherwise, 𝑑𝑚 (𝑢, 𝑣) = cd(𝑢) = 𝑑 (𝑢, 𝑣)
because we have minPts = 3. However, then all other points have
larger distance to 𝑢 than 𝑑 (𝑢, 𝑣), and 𝑢 must have an edge to one of
these other points in the cycle 𝐶. Thus, (𝑢, 𝑣) cannot be the unique
heaviest edge in 𝐶. This is a contradiction.

Now, given that (𝑢, 𝑣) is not the unique heaviest edge in 𝐶, we
can replace one of the heaviest edges 𝑒 that is in𝐶, but not in𝑇 , with
(𝑢, 𝑣), and obtain another MST in 𝐺𝑀𝑅 with the same weight.

Below we show that there is always such an edge 𝑒 in 𝐶. We first
argue that there must be some heaviest edge in 𝐶 that has its Eu-
clidean distance as its weight in𝐺𝑀𝑅 . Consider a heaviest edge (𝑎, 𝑏)
in 𝐶, and without loss of generality, suppose that 𝑑𝑚 (𝑎, 𝑏) = cd(𝑎).
If (𝑎, 𝑏) does not have its Euclidean distance as its edge weight, then

16

!"

!#

$

!# %#

$

!&

%#

!#

!#

!" !&

$

$

a b

c

d e

f

g

Figure 11: An example where the EMST is not an MST of HDBSCAN∗

base graph (call it MST∗), when minPts = 4. The blue values are core
distances of the points. The yellow values are weights of edges according
to their mutual reachability distances. The solid edges form MST∗. Both
edge (𝑓 , 𝑔) and (𝑒, 𝑓) are in the EMST, but cannot both be in MST∗

because they are the heaviest edges in the 𝑔-𝑏-𝑐-𝑑-𝑒-𝑓 -𝑔 cycle.

𝑏 must be 𝑎’s unique nearest neighbor. Besides (𝑎, 𝑏), 𝑎 must be inci-
dent to another edge in 𝐶, which we denote as (𝑎, 𝑐). 𝑑𝑚 (𝑎, 𝑐) must
equal 𝑑𝑚 (𝑎, 𝑏): we have 𝑑𝑚 (𝑎, 𝑐) ≥ cd(𝑎) = 𝑑𝑚 (𝑎, 𝑏) because 𝑏 is
𝑎’s unique nearest neighbor, but we also have 𝑑𝑚 (𝑎, 𝑐) ≤ 𝑑𝑚 (𝑎, 𝑏)
because (𝑎, 𝑏) is a heaviest edge in𝐶. Therefore,𝑑𝑚 (𝑎, 𝑐) = 𝑑𝑚 (𝑎, 𝑏),

and (𝑎, 𝑐) is one of the heaviest edges in 𝐶 under 𝑑𝑚 . Furthermore,
𝑑𝑚 (𝑎, 𝑐) = 𝑑 (𝑎, 𝑐) because 𝑑 (𝑎, 𝑐) ≤ 𝑑𝑚 (𝑎, 𝑐) by definition and
𝑑 (𝑎, 𝑐) ≥ cd(𝑎) = 𝑑𝑚 (𝑎, 𝑏) = 𝑑𝑚 (𝑎, 𝑐) because minPts = 3 and
𝑏 ≠ 𝑐 is 𝑎’s unique nearest neighbor. Thus, we have shown that (𝑎, 𝑐)
is a heaviest edge in 𝐶 that has its Euclidean distance as its weight
in 𝐺𝑀𝑅 .

All heaviest edges that have the Euclidean distance as their weight
must also be the heaviest edges in𝐶 in the Euclidean complete graph,
and thus they cannot all be in the EMST 𝑇 . Therefore, there must
exist some heaviest edge 𝑒 ∈ 𝐶 that is in 𝑇 ′ but not in 𝑇 . We can
always find such an edge in 𝑇 ′ and swap it with the edge (𝑢, 𝑣) in
𝑇 to make 𝑇 ′ share more edges with 𝑇 , without changing the total
weight of 𝑇 ′ in 𝐺𝑀𝑅 , as both edges are heaviest edges in 𝐶 under
𝑑𝑚 . We can repeat this process until we obtain 𝑇 . Therefore, 𝑇 is
also an MST in 𝐺𝑀𝑅 . □

E Additional Data from Experiments
Table 3 shows the running times for mlpack. Table 4 shows the

running times of our implementations for EMST. Table 5 shows the
running times of our implementations for HDBSCAN∗.

17

mlpack (1 thread)
2D-UniformFill-10M 90.09
3D-UniformFill-10M 211.04
5D-UniformFill-10M 964.13
7D-UniformFill-10M 4777.29
2D-SS-varden-10M 84.79
3D-SS-varden-10M 139.18
5D-SS-varden-10M 184.08
7D-SS-varden-10M 233.28
3D-GeoLife-10M 211.37

7D-Household-2.05M 59.15
10D-HT-0.93M 14.85

16D-CHEM-4.2M 732.6

Table 3: Table of running times in seconds for the sequential EMST implementation from mlpack.

EMST
EMST-Naive EMST-GFK EMST-MemoGFK Delaunay

1 thread 48 cores 1 thread 48 cores 1 thread 48 cores 1 thread 48 cores
2D-UniformFill-10M 62.51 3.64 57.93 6.11 31.54 1.20 65.46 1.90
3D-UniformFill-10M 400.57 19.30 218.02 26.07 67.80 2.24 – –
5D-UniformFill-10M – – – – 230.93 5.03 – –
7D-UniformFill-10M – – – – 1585.65 28.37 – –
2D-SS-varden-10M 57.84 3.45 60.64 6.90 27.48 1.60 64.42 1.95
3D-SS-varden-10M 240.24 12.13 189.52 23.37 48.72 1.85 – –
5D-SS-varden-10M 478.40 19.41 278.10 31.19 96.19 3.04 – –
7D-SS-varden-10M 626.78 21.10 336.62 29.26 205.15 6.18 – –
3D-GeoLife-10M 271.95 10.97 328.76 36.31 117.31 4.77 – –

7D-Household-2.05M 280.28 8.37 214.08 24.77 37.60 1.40 – –
10D-HT-0.93M 19.28 0.64 12.36 1.40 5.17 0.35 – –

16D-CHEM-4.2M – – – – 821.81 19.11 – –

Table 4: Table of running times in seconds for EMST. The fastest parallel time for each data set is in bold. The tests that do not complete within 3
hours or that run out of memory are shown as “–". The data sets with dimensionality greater than 2 are not applicable to Delaunay, and also shown
as “–”.

HDBSCAN∗ (minPts = 10)
HDBSCAN∗-MemoGFK HDBSCAN∗-GanTao
1 thread 48 cores 1 thread 48 cores

2D-UniformFill-10M 197.55 10.34 298.03 18.71
3D-UniformFill-10M 321.97 14.66 517.71 24.04
5D-UniformFill-10M 1217.87 38.41 2395.68 68.54
7D-UniformFill-10M 7487.95 289.27 – –
2D-SS-varden-10M 103.73 6.07 163.37 15.66
3D-SS-varden-10M 154.31 7.56 253.06 15.44
5D-SS-varden-10M 716.81 22.20 885.92 34.51
7D-SS-varden-10M 2253.38 48.26 2585.83 64.13
3D-GeoLife-10M 687.75 22.70 1320.15 160.48

7D-Household-2.05M 93.23 3.54 204.75 13.51
10D-HT-0.93M 15.74 1.41 29.75 3.21

16D-CHEM-4.2M 1165.20 35.77 1820.61 55.52
Table 5: Table of running times in seconds for HDBSCAN∗ with minPts = 10. The fastest parallel time for each data set is in bold. The tests that do
not complete within 3 hours, or that run out of memory are shown as “–”.

18

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Parallel Primitives
	2.3 Relevant Techniques

	3 Parallel EMST and HDBSCAN*
	3.1 EMST
	3.2 HDBSCAN*

	4 Dendrogram and Reachability Plot
	4.1 Ordered Dendrogram
	4.2 A Novel Top-Down Algorithm

	5 Experiments
	6 Conclusion
	References
	A Parallel EMST and HDBSCAN* in 2D
	A.1 Parallel EMST in 2D
	A.2 Parallel HDBSCAN* in 2D

	B Subquadratic-work Parallel EMST
	C Parallel Approximate OPTICS
	D Relationship between EMST and HDBSCAN* MST
	E Additional Data from Experiments

