
Space and Time Bounded
Multiversion Garbage Collection

Space and Time Bounded
Multiversion Garbage Collection

Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert,
Yihan Sun, and Yuanhao Wei

Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert,
Yihan Sun, and Yuanhao Wei

1DISC’21

Introduction

• Multiversioning widely used:
• Database systems

• Software Transactional Memory [FC’11] [LS’13]

• Concurrent data structures [WBBFRS’21] [NHP’20]

• High space usage ⇒ obsolete versions must be reclaimed
• Multiversion garbage collection problem (MVGC)

• Observed to be a bottleneck in modern database systems
[LSPKNCSH’16] [BLNK’19]

DISC’21 2

Research Question

DISC’21 3

How do you garbage collect
efficiently for multiversioning?

Main results

A general MVGC scheme with:
• Time: O(1) per reclaimed version, on average

• Space: roughly constant factor more versions than needed

• Progress: wait-free

DISC’21 4

Previous solutions either use:
• unbounded space [WBBFRS’21] [FC’11], or

• O(P) time per reclaimed version [BLNK’19] [LSPKNCSH’16] [LS’13]

• P: number of processes

Main results

A general MVGC scheme with:
• Time: O(1) per reclaimed version, on average

• Space: roughly constant factor more versions than needed

• Progress: wait-free

DISC’21 5

• Components of independent interest:
• Range tracking data structure

• Concurrent doubly-linked-list with amortized O(1) time remove()

Multiversioning

DISC’21 6

val: A

time: 0

val: D

time: 2

val: D

time: 5

Time

X

Y

ObjectsVersions

val: A

time: 0

val: B

time: 4

val: C

time: 6

Read-only operation begins

with timestamp 3

val: D

time: 2

val: A

time: 0

val: D

time: 5

val: B

time: 4

val: C

time: 6

Multiversion Garbage Collection (MVGC)

• How do we know which versions obsolete?

• How do we safely reclaim them?

DISC’21 7

X

Y

ObjectsVersions

Maintaining all old versions ⇒ high memory usage

Which Versions are Needed?

DISC’21 8

Time

X

Y

ObjectsVersions

Timestamps of read-only operations

Most recent versions needed
Versions needed by

read-only operations

Multiversion Garbage Collection (MVGC)

DISC’21 9

X

Begin timestamp of read-only operations

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked
versions

Related Work – Epoch-Based Solutions

• Track the oldest active read-only operation and reclaim any version
overwritten before the start of this operation

• Most commonly used

• Pros: Fast, easy to implement

DISC’21 10

X

Related Work – Epoch-Based Solutions

• Cons: High space usage
• Unable to collect newer obsolete versions

• Particularly bad with long read-only operations, which is one of the main motivations
for multiversioning

• E.g. database scans, range queries, etc

• Paused process can lead to unbounded space usage

DISC’21 11

X

Related Work – Other Solutions

• Techniques have been developed to address shortcomings of
epoch-based solutions
• GMV [LS’13], Hana [LSPKNCSH’16], Steam [BLNK’19]

• Requires Ω(P) time, on average, to collect each version in worst case
executions,

• Keeps up to P times more versions than necessary

DISC’21 12

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 13

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
DISC’21 14

X

Y

Pool of old versions

Add to pool
Set of obsolete

versions returned

Range tracking data structure

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
DISC’21 15

X

Y

n

Obsolete Need parent to unlink

Concurrent

removes

We present a wait-free, amortized
O(1) algorithm for remove()

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 16

Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this
problem, but

• HP sacrifices wait-freedom

• CRC has bad worst case space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list

Step 1: Identifying Obsolete Versions

DISC’21 17

(

(

(

(

((

()

)

))

))

)

Announced timestamps

Lifetime of a version

When it was written

When it was overwritten

Range Tracker: Definition

DISC’21 18

• Supports announce(), unannounce(), and deprecate()

(

(

(

(

(

()

)

)

))

)

()

add
remove &

return

()

()

Observations

DISC’21 19

(

(

(

(

(

()

)

)

))

)

()

Newly announced timestamps

always greater than previously

announced timestamps and intervalsNew intervals have

increasing end timestamps

Range Tracker: Implementation

• Announce() & unannounced() write to an announcement array

• Deprecate(Range r):
• Append r to process local list (sorted by end timestamp)

• If local list reaches size O(P log P),
• Push local list onto a shared queue

• Pop two lists from the shared queue

• Scan announcement array

• Separate the two popped lists into intersected (A) and non-intersected intervals (B)

• O(P log P) time

• Push A back to the shared queue and return B

DISC’21 21

Range Tracker: Time Bounds

• O(1) time announce() & unannounced()

• O(P) time push/pop from shared queue (P-SIM, wait-free)

• Every O(P log P) calls to deprecate() we perform:
• 2 pop, 1-3 push to shared queue

• O(P log P) algorithm for finding intersected intervals

• Deprecate() takes amortized O(1) time

DISC’21 22

Range Tracker: Space Bounds

• O(P2 log P) intervals in local lists, in total

• O(M) intervals in the shared queue
• M: maximum number of needed intervals at any point in history

• Overall, the range tracker stores a constant factor more
intervals than needed plus an additive term

DISC’21 23

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
DISC’21 24

X

Y

n

Obsolete

Concurrent

removes

Step 2: Unlinking from version lists

DISC’21 25

2 3 4 5 6 7 108 9 11 12 13 14 15 16

Implicitly

defined tree

Version list

Depth

Marked for

deletion

7

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 27

Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this
problem, but

• HP sacrifices wait-freedom

• CRC has bad worst case space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list

Our results

DISC’21 28

X

• Space bounds:
• Number of unreclaimed versions ∈ ~O(# required versions)

• Time bounds:
• O(1) time, on average, to identify, remove, and reclaim a version

• Wait-free

Diagram might be good for title page

Space Bounds

Our MVGC technique (counting all three steps) achieves:

• Amortized O(1) time, in expectation, for each reclaimed version

• A maximum of O(N + P2 log P + P log L) unreclaimed versions
• N: high watermark number of needed versions throughout execution

• P: number of processes

• L: maximum number of versions added to a single version list

• In large data structures, N >> (P2 log P + P log L)
• Rough notes:

• Emphasize this somehow, Log L is small, P is small compared to N

• Size of databases vs how many processes they run with

DISC’21 29

Conclusion

• Multiversion Garbage Collection is an important problem

• Our paper presents a theoretically efficient solution

• Currently working on a practical version, preliminary results look
promising

DISC’21 30

Thank you for listening!

DISC’21 31

References

• J. Lee, H. Shin, C. G. Park, S. Ko, J. Noh, Y. Chuh, W. Stephan,
and W.-S. Han. Hybrid garbage collection for multi-version
concurrency control in SAP HANA. In SIGMOD. ACM, 2016.

• S. M. Fernandes and J. Cachopo. Lock-free and scalable multi-
version software transactional memory. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), page
179–188, 2011.

• L. Lu and M. L. Scott. Generic multiversion STM. In Proc. International Symposium on Distributed Computing,
pages 134–148. Springer, 2013.

• J. Böttcher, V. Leis, T. Neumann, and A. Kemper. Scalable garbage collection for in-memory MVCC systems.
Proceedings of the VLDB Endowment, 13(2):128–141, 2019.

DISC’21 34

	Default Section
	幻灯片 1: Space and Time Bounded Multiversion Garbage Collection
	幻灯片 2: Introduction
	幻灯片 3: Research Question
	幻灯片 4: Main results
	幻灯片 5: Main results
	幻灯片 6: Multiversioning
	幻灯片 7: Multiversion Garbage Collection (MVGC)
	幻灯片 8: Which Versions are Needed?
	幻灯片 9: Multiversion Garbage Collection (MVGC)
	幻灯片 10: Related Work – Epoch-Based Solutions
	幻灯片 11: Related Work – Epoch-Based Solutions
	幻灯片 12: Related Work – Other Solutions
	幻灯片 13: Overview
	幻灯片 14: Overview
	幻灯片 15: Overview
	幻灯片 16: Overview
	幻灯片 17: Step 1: Identifying Obsolete Versions
	幻灯片 18: Range Tracker: Definition
	幻灯片 19: Observations
	幻灯片 21: Range Tracker: Implementation
	幻灯片 22: Range Tracker: Time Bounds
	幻灯片 23: Range Tracker: Space Bounds
	幻灯片 24: Overview
	幻灯片 25: Step 2: Unlinking from version lists
	幻灯片 27: Overview
	幻灯片 28: Our results
	幻灯片 29: Space Bounds
	幻灯片 30: Conclusion
	幻灯片 31: Thank you for listening!

	Old Slides
	幻灯片 34: References

