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Introduction

• Multiversioning widely used:
• Database systems 

• Software Transactional Memory [FC’11] [LS’13]

• Concurrent data structures [WBBFRS’21] [NHP’20]

• High space usage ⇒ obsolete versions must be reclaimed
• Multiversion garbage collection problem (MVGC)

• Observed to be a bottleneck in modern database systems 
[LSPKNCSH’16] [BLNK’19] 
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Research Question
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How do you garbage collect 
efficiently for multiversioning?



Main results

A general MVGC scheme with:
• Time: O(1) per reclaimed version, on average

• Space: roughly constant factor more versions than needed

• Progress: wait-free
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Previous solutions either use: 
• unbounded space [WBBFRS’21] [FC’11], or

• O(P) time per reclaimed version [BLNK’19] [LSPKNCSH’16] [LS’13]

• P: number of processes



Main results

A general MVGC scheme with:
• Time: O(1) per reclaimed version, on average

• Space: roughly constant factor more versions than needed

• Progress: wait-free
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• Components of independent interest:
• Range tracking data structure

• Concurrent doubly-linked-list with amortized O(1) time remove()



Multiversioning
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Multiversion Garbage Collection (MVGC)

• How do we know which versions obsolete?

• How do we safely reclaim them?
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Maintaining all old versions ⇒ high memory usage 



Which Versions are Needed?
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Multiversion Garbage Collection (MVGC)
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X

Begin timestamp of read-only operations

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked 
versions



Related Work – Epoch-Based Solutions

• Track the oldest active read-only operation and reclaim any version 
overwritten before the start of this operation

• Most commonly used

• Pros: Fast, easy to implement
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Related Work – Epoch-Based Solutions

• Cons: High space usage
• Unable to collect newer obsolete versions

• Particularly bad with long read-only operations, which is one of the main motivations 
for multiversioning

• E.g. database scans, range queries, etc

• Paused process can lead to unbounded space usage
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Related Work – Other Solutions

• Techniques have been developed to address shortcomings of 
epoch-based solutions
• GMV [LS’13], Hana [LSPKNCSH’16], Steam [BLNK’19] 

• Requires Ω(P) time, on average, to collect each version in worst case 
executions,

• Keeps up to P times more versions than necessary
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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We present a wait-free, amortized 
O(1) algorithm for remove()



Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this 
problem, but

• HP sacrifices wait-freedom

• CRC has bad worst case space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list



Step 1: Identifying Obsolete Versions

DISC’21 17

(

(

(

(

( (

( )

)

) )

) )

)

Announced timestamps

Lifetime of a version

When it was written

When it was overwritten



Range Tracker: Definition
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• Supports announce(), unannounce(), and deprecate()

(

(

(

(

(

( )

)

)

) )

)

( )

add
remove & 

return

( )

( )



Observations
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Range Tracker: Implementation

• Announce() & unannounced() write to an announcement array

• Deprecate(Range r):
• Append r to process local list (sorted by end timestamp)

• If local list reaches size O(P log P), 
• Push local list onto a shared queue

• Pop two lists from the shared queue

• Scan announcement array

• Separate the two popped lists into intersected (A) and non-intersected intervals (B) 

• O(P log P) time

• Push A back to the shared queue and return B
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Range Tracker: Time Bounds

• O(1) time announce() & unannounced()

• O(P) time push/pop from shared queue (P-SIM, wait-free)

• Every O(P log P) calls to deprecate() we perform:
• 2 pop, 1-3 push to shared queue

• O(P log P) algorithm for finding intersected intervals

• Deprecate() takes amortized O(1) time

DISC’21 22



Range Tracker: Space Bounds

• O(P2 log P) intervals in local lists, in total

• O(M) intervals in the shared queue
• M: maximum number of needed intervals at any point in history

• Overall, the range tracker stores a constant factor more 
intervals than needed plus an additive term

DISC’21 23



Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Step 2: Unlinking from version lists
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this 
problem, but

• HP sacrifices wait-freedom

• CRC has bad worst case space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list



Our results
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X

• Space bounds:
• Number of unreclaimed versions ∈ ~O(# required versions)

• Time bounds:
• O(1) time, on average, to identify, remove, and reclaim a version

• Wait-free

Diagram might be good for title page



Space Bounds

Our MVGC technique (counting all three steps) achieves:

• Amortized O(1) time, in expectation, for each reclaimed version

• A maximum of O(N + P2 log P + P log L) unreclaimed versions
• N: high watermark number of needed versions throughout execution

• P: number of processes

• L: maximum number of versions added to a single version list

• In large data structures, N >> (P2 log P + P log L)
• Rough notes:

• Emphasize this somehow, Log L is small, P is small compared to N

• Size of databases vs how many processes they run with
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Conclusion

• Multiversion Garbage Collection is an important problem

• Our paper presents a theoretically efficient solution

• Currently working on a practical version, preliminary results look 
promising
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Thank you for listening!
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