Randomized Incremental
Convex Hull is Highly Parallel

Guy Blelloch, Yan Gu, Julian Shun and Yihan Sun

UcC UucC
Riverside Riverside

Convex Hull

* For a set of points X in d dimensions, find the smallest convex set
that contains all points

L

A convex polygon in 2D A convex polyhedron in 3D

Our contribution

e Qur contribution:

* Proved the shallow depth of dependence in incremental convex hull
construction

* Proposed a new parallel incremental convex hull algorithm that is simple
and efficient

Convex Hull Algorithms

 Scan-based algorithms
 Eg., Jarvis March, Graham scan
* Inherently sequential

* Divide-and-conquer
* Parallelizable, but complicated

* Eg., Amoto et al. achieved optimal
work and O (logn) span

 Randomized incremental
* Widely-used in practice

w o °
R
D * o] . -
\ ™ ¢ -
[~
-
° -
Graham scan Jarvis March

Source:
https://kukuruku.co/post/building-a-minimal-convex-hull/

Divide-and-conquer

https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/

Convex Hull Algorithms

* Randomized incremental
* Widely-used in practice
 Easy to implement, easy extend to high dimensions

 Sequentially, optimal work for d-dimensions in expectation [Clarkson and
Shor]

* Also in many parallel implementations [CLP04, DLP04, GCNTH13, GLOP06, GS03, LOP05]
* Never have cost analysis in the parallel setting

Randomized incremental convex hull algorithm

« Adding points in a random order (random permutation or random priority)

11

/ /Pli]: input points sorted by priority
//Maintains H: current convex hull

add_point(point p) {
if (p in H) return;
update H by adding p;
}

incremental_convex_hull(point* P) {
for(i=1ton){
H = add_point(H, P[i]);
}
}

Randomized incremental convex hull algorithm

e Parallelizablel

A parallel algorithm matching the sequential order
* Determinism: easy for programming

« Easy reasoning/analysis: directly use analysis in
the sequential setting

\ &/ U y SV AT
w has to wait

Dependence graph (DG)

* Randomized incremental algorithms can
be parallelized

 Existing algorithms: Knuth's shuffle [SGBFG14),
Delaunay triangulation [BGSS16, BGSS18], 2D LP
[BGSS14), ...
* lteration dependence graph (IDG) [scBFG14]
* Nodes: iterations

* Arcs. x to y means y can be processed only
after x has finished

* For convex hull
* Nodes: points
* Arcs. x — y if y depend on x

Dependence graph (DG)

* Randomized incremental algorithms can
be parallelized

 Existing algorithms: Knuth's shuffle [SGBFG14),
Delaunay triangulation [BGSS16, BGSS18], 2D LP
[BGSS14], ...

* Depth of DG is O (logn) w.h.p.
* Parallel algorithm with polylog span (longest
dependence chain in algorithm)

* Iteration dependence graph (IDG)

* For convex hull
* No known result for the depth of DG

Dependence for Incremental Convex Hull

* Adding c dependsonv, w, X, Y, z, t
A point can depend on an

arbitrary number of other points °o
» Sequentially it's OK: work adds up: e
4
 Each point depends on a constant /b
number of other points on average, S o S

——
-
-
——

the total work is bounded

* In parallel, if the fan-in of each
node contribute to the possible
#path in the DG multiplicatively

 Cannot bound the span

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

Revisit - Dependence for Incremental Convex Hull

Adding ¢ depends on ... ? u-v, v-w, and a-z, z-t
More precisely. c-v depends on u-v and v-w, and c-z depends on a-z and z-t

e c-v and c-z don't need to be added RN
together: asynchrony 7y N

3 i a D
More relaxed/fine-grained i ATTTTIIIITERON N
order to add edges! 2

 Each edge depends on at most 2
other edges! An existing edge matters only

, : : If it has a common endpoint
Let's study eczlges Instead with the new edge
of points!
Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

Study the edges in convex hull -Configuration Space

Configuration space [CS89, DK:89, Mulmuley'94]

* For incremental algorithms, study the configurations
 Eg, triangles in Delaunay triangulations, edges in 2D convex hulls
* Objects: input elements (e.g., points for Delaunay triangulation or convex hull)

* Configurations
* Defining set: objects that defines a configuration
* Conflict set: objects that cannot co-exist with the configuration

Work-efficiency: total conflict set size can be bounded [cs89]

12

Study the edges in convex hull -Configuration Space

Configuration space 2-D convex hulls
* Objects. input elements * Points
« Configurations * Edges (Facets in high D)
* Defining set: objects that defines a * 2 endpoints defining the edge
configuration (d-1 points defining the facet in high D)
 Conflict set: objects that cannot co-exist » Points visible from the edge
with the configuration (that will remove the edge/facet)

What about the analysis of span?

Work-efficiency: total conflict set size can be bounded [cs89]

13

Study the edges in convex hull - Configuration DG

2-D convex hulls
Configuration space Dependence graph

* Prove work-efficiency * Analyze parallel depth

) | |4

Configuration dependence graph [this paper]

* Build dependence for configurations,
Instead of iterations

* Build dependence for edges/facets,
Instead of points

Generally

For convex hull

14

Configuration DG

* A configuration x supports y if y depends on x

k-support
Configuration dependence graph d-D convex hulls
» Each configuration is supported by at * k = 2 isa constant
most k other configurations * k = 2 also for high dimensions

Theorem 1 (informally) (Shallow dependence for k support) A configuration

dependence graph with k-support (k is a constant) has depth O (log n) w.h.p., where
n is the number of objects.

18

Revisit - Dependence for Incremental Convex Hull

Adding ¢ depends on ... ?
u-v-w, and y-z-t

More precisely.

u-v and v-w support c-v
y-z and z-t support c-z

* c-v replaces v-w
* c-z replaces y-z
* ¢ buries w-x and x-y

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

19

Replace or Bury?

* The point p’ that will “change” the corner p'inA
* Visible frome; or e, * visible from e but not e,
 The earliest point in the random order * ¢,-p-e, at the boundary of

all edges p’ will remove
* p-p’ *replace® e,
* The other edge incident on p

will be processed by another
corner

« p’ in C (symmetric)
* visible from e, but not e,
* p-p' *replace* e,

20

Replace or Bury?

* The point p’ that will “change” the corner *p'inB
* Visible frome; or e, * visible from both e; and e,
 The earliest point in the random order * e;-p-e, inthe middle of all

edges p’ will remove
* p’ *buries* e; and e,

21

More notes

* k-support with k = 2 still holds for higher dimensions.

* The parallel algorithm works similarly:
 Edge = Facets, Corner => Ridge
* For d dimensions with constant d:

d
* Work-efficient: 0(nl5| + nlogn) expected work
* Polylog(n) span w.h.p. (the concrete form of bound depends on computational model)

 Algorithm doesn't need to run in rounds
 Can run in divide-and-conquer manner in nested parallelism

22

Summary

Proved the low depth of dependence graph for parallel incremental convex hull
* O(logn) for n objects w.h.p.

* Key technique: asynchrony and k-support
* Asynchrony: Build dependence on facets instead of points
 k-support: any facet depends on at most k = 2 other facets - fewer dependences

Designed a parallel incremental algorithm for convex hull
» Work-efficient with polylog span, for d dimension with constant d

* Key technique: asynchrony and k-support
 Asynchrony: facets added by a point can be added in different rounds
« k-support: Allowing burying ridges/edges: avoid these “false” dependence

23

Summary

Proved the low depth of dependence graph for parallel incremental convex hull
* O(logn) for n objects w.h.p.

Designed a parallel incremental algorithm for convex hull

» Work-efficient with polylog span, for d dimension with constant d

Key technique: asynchrony and k-support

* Technique applicable to any k-support configuration space

* When k is a constant, we can prove shallow depth: Degeneracy in 3D convex hull, half-
space intersection, unit circle intersection, ...

* Problems remains open (not constant-support): trapezoid decomposition, MIS, ...

25

Parallel incremental convex hull algorithm

* In each round:

* In parallel: look at each possible support set - a corner of two edges in 2D,
or a ridge of adjacent facets for high dimensions

* Process the corner/ridge to see if it will be removed (replaced/buried) @

* Newly formed corners/ridges will be for the next round G AN

* For any edge e, the point that will remove it in this round is:
* Among all points that are visible from e, the one with the highest priority
(consistent with sequential order)
« Call it the pivot point of e: pivot(e) - maintain the conflict set for each edge

28

Process corner (edge eq, e, and point p)

Let p, =pivot(eq), p, = pivot(e,)

* Case . p; = p, = null no conflict points!
e This corner is finalized and will never be removed
* Return

No point in this area

P
€1 €2

29

Process corner (edge eq, e, and point p)

Let p, =pivot(eq), p, = pivot(e,)
* Case 2: p, has higher priority than p, (null has lowest priority)
* p, Isvisible from e, but not e, |
* p,-p depends on this corner e;-p-e,
* Create edge p-p,, update its conflict set
» e, Will be replaced by p-p, P1

_-" g €1
We don't know what happened (or will - O/]/O S‘ e

o Boundary of all edge

happen) to the other edge incident onp;, «®
but we don't care in this process

that p; will remove

30

Process corner (edge eq, e, and point p)

Let p, = pivot(e,), p2 = pivot(e;)
« Case 3: p, has higher priority than p; (null has lowest priority)

Symmetric

31

Process corner (edge eq, e, and point p)

Let p, =pivot(e,), p, = pivot(e,) o
cCasebip1=p,=p
b A\
* p isvisible from both e; and e,! RN
* The corner does not support any edge e AR
incident on p’ ol MR
* p' buries e; -p-e, Re p \\
* Delete e; -p-e,, return e o N
/// e, €- .

p1 WIll be processed by other corners

32

Parallel incremental convex hull algorithm

* In each round:

* In parallel: look at each possible support set - a corner of two edges in 2D,
or a ridge of adjacent facets for high dimensions

* Process the corner/ridge to see if it will be removed relaced/burled

° ewy ormea corners/riages wit e 1or the next rounc

33

Process corner - form new corners

How is a new corner formed?
* The new corner p,-p-x directly formed: process in the next round

* What about the corner at p,?

What happened (or will happen) to the
other edge incident on p;? °

Process corner - form new corners

How is a new corner formed?
* The new corner p,-p-x directly formed: process in the next round

* What about the corner at p,?
* Two edge form a corner: the later one comes makes the corner
ready to be processed

 Use a parallel hash table
* Let the two edges synchronize

P1

If the other edge p-p’ already exists, add
the corner p’-p, -p to be processed in °
the next round .

Running example

* The earliest visible point from an edge e or a corner e{-p-e,.
among all the points visible from the corresponding edges, the one
that appears the earliest in the random order.

* The first one that will be process in sequential order

36

* U-V-W support c-v
=> c-V replaces v-w

e V-W-X: support w-b
=> W-b replaces wx

* W-X-Y. support x-a
=>X-a replaces xy

2 S * X-Yy-z: buried by a
=> remove x-y and y-z
* y-z-t: support a-z
=> z-a replaces y-z

Running example

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order
37

* U-V-W. support c-v
=> c-Vv replaces v-w

e V-W-X: support w-b
=> W-b replaces wx

* W-X-Y. support x-a
=>X-a replaces xy

N * X-Yy-z: buried by a
=> remove x-y and y-z
* y-z-t: support a-z
=> z-a replaces y-z

Running example

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order
39

Running example * x-a-z support b-a

=> b-a replaces x-y
* a-z-t: support c-t
=> c-z replaces a-z

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order
40

Running example * x-a-z support b-a

=> b-a replaces x-y
* a-z-t: support c-t
¢ => c-z replaces a-z

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order
41

Runnlng example e w-b-a: buried by C

=> Remove w-b and b-a
* V-C-Z no point visible
C = return

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order
42

Runnlng example * w-b-a: buried by C

=> Remove w-b and b-a
* V-C-Z: no point visible
C = return

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order
43

	幻灯片 1: Randomized Incremental Convex Hull is Highly Parallel
	幻灯片 2: Convex Hull
	幻灯片 3: Our contribution
	幻灯片 4: Convex Hull Algorithms
	幻灯片 5: Convex Hull Algorithms
	幻灯片 6: Randomized incremental convex hull algorithm
	幻灯片 7: Randomized incremental convex hull algorithm
	幻灯片 8: Dependence graph (DG)
	幻灯片 9: Dependence graph (DG)
	幻灯片 10: Dependence for Incremental Convex Hull
	幻灯片 11: Revisit - Dependence for Incremental Convex Hull
	幻灯片 12: Study the edges in convex hull –Configuration Space
	幻灯片 13: Study the edges in convex hull –Configuration Space
	幻灯片 14: Study the edges in convex hull – Configuration DG
	幻灯片 18: Configuration DG
	幻灯片 19: Revisit - Dependence for Incremental Convex Hull
	幻灯片 20: Replace or Bury?
	幻灯片 21: Replace or Bury?
	幻灯片 22: More notes
	幻灯片 23: Summary
	幻灯片 25: Summary
	幻灯片 28: Parallel incremental convex hull algorithm
	幻灯片 29: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 30: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 31: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 32: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 33: Parallel incremental convex hull algorithm
	幻灯片 34: Process corner – form new corners
	幻灯片 35: Process corner – form new corners
	幻灯片 36: Running example
	幻灯片 37: Running example
	幻灯片 39: Running example
	幻灯片 40: Running example
	幻灯片 41: Running example
	幻灯片 42: Running example
	幻灯片 43: Running example

