Randomized Incremental Convex Hull is Highly Parallel

Guy Blelloch, Yan Gu, Julian Shun and Yihan Sun

CMUUCMITUCRiversideRiversideRiverside

Convex Hull

• For a set of points X in d dimensions, find the smallest convex set that contains all points

A convex polyhedron in 3D

A convex polygon in 2D

Our contribution

- Our contribution:
 - Proved the shallow depth of dependence in incremental convex hull construction
 - Proposed a new parallel incremental convex hull algorithm that is simple and efficient

Convex Hull Algorithms

- Scan-based algorithms
 - E.g., Jarvis March, Graham scan
 - Inherently sequential
- Divide-and-conquer
 - Parallelizable, but complicated
 - E.g., Amoto et al. achieved optimal work and $O(\log n)$ span
- Randomized incremental
 - Widely-used in practice

Convex Hull Algorithms

Randomized incremental

- Widely-used in practice
- Easy to implement, easy extend to high dimensions
- Sequentially, optimal work for d-dimensions in expectation [Clarkson and Shor]
- Also in many parallel implementations [CLP'04, DLP'04, GCNTH'13, GLOP'06, GS'03, LOP'05]
- Never have cost analysis in the parallel setting

Randomized incremental convex hull algorithm

• Adding points in a random order (random permutation or random priority)

Randomized incremental convex hull algorithm

• Parallelizable!

• Widely-used in narallel implementations

A parallel algorithm matching the sequential order

- Determinism: easy for programming
- Easy reasoning/analysis: directly use analysis in the sequential setting

Dependence graph (DG)

- Randomized incremental algorithms can be parallelized
 - Existing algorithms: Knuth's shuffle [SGBFG'14], Delaunay triangulation [BGSS'16, BGSS'18], 2D LP [BGSS'16], ...
- Iteration dependence graph (IDG) [SGBFG'14]
 - Nodes: iterations
 - Arcs: *x* to *y* means *y* can be processed only after *x* has finished
- For convex hull
 - Nodes: points
 - Arcs: $x \rightarrow y$ if y depend on x

Dependence graph (DG)

- Randomized incremental algorithms can be parallelized
 - Existing algorithms: Knuth's shuffle [SGBFG14], Delaunay triangulation [BGSS'16, BGSS'18], 2D LP [BGSS'16], ...
 - Depth of DG is $O(\log n)$ w.h.p.
 - Parallel algorithm with polylog span (longest dependence chain in algorithm)
- Iteration dependence graph (IDG)
- For convex hull
 - No known result for the depth of DG

Dependence for Incremental Convex Hull

- Adding *c* depends on v, w, x, y, z, t
- A point can depend on an arbitrary number of other points
- Sequentially it's OK: work adds up:
 - Each point depends on a constant number of other points on average, the total work is bounded
- In parallel, if the fan-in of each node contribute to the possible #path in the DG multiplicatively
 - Cannot bound the span

Revisit - Dependence for Incremental Convex Hull

Adding *c* depends on ... ? **u-v, v-w, and a-z, z-t** More precisely: **c-v** depends on **u-v** and **v-w**, and **c-z** depends on **a-z** and **z-t**

- c-v and c-z don't need to be added together. asynchrony
 - More relaxed/fine-grained order to add edges!
- Each edge depends on at most 2 other edges!

An existing edge matters only if it has a common endpoint with the new edge.

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

Study the edges in convex hull –Configuration Space

Configuration space [CS'89, DK'89, Mulmuley'94]

- For incremental algorithms, study the configurations
 - E.g., triangles in Delaunay triangulations, edges in 2D convex hulls
- Objects: input elements (e.g., points for Delaunay triangulation or convex hull)
- Configurations
 - **Defining set**: objects that defines a configuration
 - Conflict set: objects that cannot co-exist with the configuration

Work-efficiency: total conflict set size can be bounded [CS'89]

Study the edges in convex hull –Configuration Space

Configuration space

- Objects: input elements
- Configurations
 - Defining set: objects that defines a configuration
 - Conflict set: objects that cannot co-exist with the configuration

2-D convex hulls

- Points
- Edges (Facets in high D)
 - 2 endpoints defining the edge (d–1 points defining the facet in high D)
 - Points visible from the edge (that will remove the edge/facet)

What about the analysis of span?

Work-efficiency: total conflict set size can be bounded [CS'89]

Study the edges in convex hull – Configuration DG

2-D convex hulls

Configuration space

• Prove work-efficiency

Dependence graph

• Analyze parallel depth

Configuration dependence graph [this paper]

Generally

For convex hull

- Build dependence for configurations, instead of iterations
- Build dependence for edges/facets, instead of points

Configuration DG

• A configuration x supports y if y depends on x

k-support

Configuration dependence graph

 Each configuration is supported by at most k other configurations d-D convex hulls

- k = 2 is a constant
- k = 2 also for high dimensions

Theorem 1 (informally) (Shallow dependence for k support) A configuration dependence graph with k-support (k is a constant) has depth $O(\log n)$ w.h.p., where n is the number of objects.

Revisit - Dependence for Incremental Convex Hull

Adding *c* depends on ... ? u-v-w, and y-z-t More precisely: u-v and v-w support c-v y-z and z-t support c-z

- c-v replaces v-w
- c-z replaces y-z
- c buries w-x and x-y (false dependence)

Replace or Bury?

- The point p^\prime that will "change" the corner
 - Visible from e_1 or e_2
 - The earliest point in the random order

• *p*′ in *A*

- visible from e_1 but not e_2
- e_1 -p- e_2 at the boundary of all edges p' will remove
- p-p' *replace* e_1
- The other edge incident on p' will be processed by another corner

- p' in C (symmetric)
 - visible from e₂ but not e₁
 p-p' *replace* e₂

Replace or Bury?

- The point p' that will "change" the corner
 - Visible from e_1 or e_2
 - The earliest point in the random order

• *p*′ in *B*

- visible from both e_1 and e_2
- e_1 -p- e_2 in the middle of all edges p' will remove
- p' *buries* e_1 and e_2

More notes

- k-support with k = 2 still holds for higher dimensions.
- The parallel algorithm works similarly.
 - Edge => Facets, Corner => Ridge
- For d dimensions with constant d:
 - Work-efficient: $O(n^{\lfloor \frac{d}{2} \rfloor} + n \log n)$ expected work
 - Polylog(n) span w.h.p. (the concrete form of bound depends on computational model)
- Algorithm doesn't need to run in rounds
 - Can run in divide-and-conquer manner in nested parallelism

Summary

Proved the low depth of dependence graph for parallel incremental convex hull

- $O(\log n)$ for n objects w.h.p.
- Key technique: asynchrony and k-support
 - Asynchrony: Build dependence on facets instead of points
 - k-support: any facet depends on at most k = 2 other facets fewer dependences

Designed a parallel incremental algorithm for convex hull

- Work-efficient with polylog span, for d dimension with constant d
- Key technique: asynchrony and k-support
 - Asynchrony: facets added by a point can be added in different rounds
 - k-support: Allowing burying ridges/edges: avoid these "false" dependence

Summary

Proved the low depth of dependence graph for parallel incremental convex hull

• $O(\log n)$ for n objects w.h.p.

Designed a parallel incremental algorithm for convex hull

- Work-efficient with polylog span, for d dimension with constant d Key technique: asynchrony and k-support
- Technique applicable to any k-support configuration space
 - When k is a constant, we can prove shallow depth: Degeneracy in 3D convex hull, halfspace intersection, unit circle intersection, ...
 - Problems remains open (not constant-support): trapezoid decomposition, MIS, ...

Parallel incremental convex hull algorithm

- In each round:
 - In parallel: look at each possible support set a corner of two edges in 2D, or a ridge of adjacent facets for high dimensions
 - Process the corner/ridge to see if it will be removed (replaced/buried)
 - Newly formed corners/ridges will be for the next round

- Among all points that are visible from e, the one with the highest priority (consistent with sequential order)
- Call it the pivot point of e: pivot(e) maintain the conflict set for each edge

- Let p_1 = pivot(e_1), p_2 = pivot(e_2)
- Case 1: $p_1 = p_2 = null$ no conflict points!
 - This corner is finalized and will never be removed
 - Return

Let p_1 = pivot(e_1), p_2 = pivot(e_2)

- Case 2: p_1 has higher priority than p_2 (null has lowest priority)
 - p_1 is visible from e_1 , but not e_2 !
 - p_1 -p depends on this corner e_1 -p- e_2
 - Create edge p- p_1 , update its conflict set
 - e_1 will be replaced by p- p_1

We don't know what happened (or will happen) to the other edge incident on p_1 , but we don't care in this process

Boundary of all edges that p_1 will remove

 e_1

- Let p_1 = pivot(e_1), p_2 = pivot(e_2)
- Case 3: p_2 has higher priority than p_1 (null has lowest priority)

Symmetric

- Let p_1 = pivot(e_1), p_2 = pivot(e_2)
- Case 4: $p_1 = p_2 = p'$
 - p' is visible from both e_1 and e_2 !
 - The corner does not support any edge incident on p^\prime
 - p' buries e_1 -p- e_2
 - Delete e_1 -p- e_2 , return

 p_1 will be processed by other corners

 e_2

Parallel incremental convex hull algorithm

- In each round:
 - In parallel: look at each possible support set a corner of two edges in 2D, or a ridge of adjacent facets for high dimensions
 - Process the corner/ridge to see if it will be removed (replaced/buried)

Newly formed corners/ridges will be for the next round

Process corner – form new corners

How is a new corner formed?

- The new corner p_1 -p-x directly formed: process in the next round
- What about the corner at p_1 ?

Process corner – form new corners

How is a new corner formed?

- The new corner p_1 -p-x directly formed: process in the next round
- What about the corner at p_1 ?
- Two edge form a corner. the later one comes makes the corner ready to be processed
- Use a parallel hash table
 - Let the two edges synchronize

If the other edge p-p' already exists, add the corner p'- p_1 -p to be processed in the next round

 χ

 e_1

- The earliest visible point from an edge e or a corner e_1 -p- e_2 : among all the points visible from the corresponding edges, the one that appears the earliest in the random order.
 - The first one that will be process in sequential order

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

- y-z-t: support a-z
 z-a replaces y-z
- => remove x-y and y-z
- x-y-z: buried by a
- w-x-y: support x-a
 >x-a replaces xy
- w-x-y: support x-a
- v-w-x: support w-b
 w-b replaces wx
- => c-v replaces v-w
- u-v-w. support c-v

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

Running example

• u-v-w. support c-v

• v-w-x: support w-b

• w-x-y. support x-a

=> c-v replaces v-w

=> w-b replaces wx

- x-a-z: support b-a
- => b-a replaces x-y
- a-z-t: support c-t
- => c-z replaces a-z

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

- x-a-z: support b-a
- => b-a replaces x-y
- a-z-t: support c-t
- => c-z replaces a-z

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

С

b

U x

W

а

Ζ

- w-b-a: buried by c
- => Remove w-b and b-a
- v-c-z: no point visible

=> return

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

С

b

O x

О

O

W

Ζ

- w-b-a: buried by c
- => Remove w-b and b-a
- v-c-z: no point visible

=> return

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order