
Randomized Incremental
Convex Hull is Highly Parallel

Guy Blelloch, Yan Gu, Julian Shun and Yihan Sun

CMU UC
Riverside

MIT UC
Riverside

Convex Hull

• For a set of points 𝑿 in d dimensions, find the smallest convex set
that contains all points

A convex polygon in 2D A convex polyhedron in 3D

Our contribution

• Our contribution:
• Proved the shallow depth of dependence in incremental convex hull

construction

• Proposed a new parallel incremental convex hull algorithm that is simple
and efficient

Convex Hull Algorithms

• Scan-based algorithms
• E.g., Jarvis March, Graham scan

• Inherently sequential

• Divide-and-conquer
• Parallelizable, but complicated

• E.g., Amoto et al. achieved optimal
work and 𝑂(log 𝑛) span

• Randomized incremental
• Widely-used in practice

4

Jarvis MarchGraham scan

Source:
https://kukuruku.co/post/building-a-minimal-convex-hull/

Divide-and-conquer

https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/
https://kukuruku.co/post/building-a-minimal-convex-hull/

Convex Hull Algorithms

• Randomized incremental
• Widely-used in practice

• Easy to implement, easy extend to high dimensions

• Sequentially, optimal work for d-dimensions in expectation [Clarkson and
Shor]

• Also in many parallel implementations [CLP’04, DLP’04, GCNTH’13, GLOP’06, GS’03, LOP’05]

• Never have cost analysis in the parallel setting

5

Randomized incremental convex hull algorithm

• Adding points in a random order (random permutation or random priority)

6

1

2
3

4

5
6

7

8

9

10

11
//P[i]: input points sorted by priority
//Maintains H: current convex hull

add_point(point p) {
if (p in H) return;
update H by adding p;

}

incremental_convex_hull(point* P) {
for (i = 1 to n) {

H = add_point(H, P[i]);
}

}

Randomized incremental convex hull algorithm

• Parallelizable!

• Widely-used in parallel implementations

7

1

2
3

4

5
6

7

9

10

11

12

13

14

15

8

Conflict:
• ⑫ and ⑬ are both

visible from ⑪-②
• Both want to remove

edge ⑪-②
• ⑫ comes first, so ⑬

has to wait

A parallel algorithm matching the sequential order
• Determinism: easy for programming
• Easy reasoning/analysis: directly use analysis in

the sequential setting

Dependence graph (DG)

• Randomized incremental algorithms can
be parallelized
• Existing algorithms: Knuth’s shuffle [SGBFG’14],

Delaunay triangulation [BGSS’16, BGSS’18], 2D LP
[BGSS’16], …

• Iteration dependence graph (IDG) [SGBFG’14]

• Nodes: iterations

• Arcs: 𝑥 to 𝑦 means 𝑦 can be processed only
after 𝑥 has finished

• For convex hull
• Nodes: points

• Arcs: 𝑥 → 𝑦 if y depend on x

8

1 2 3

45 6

9

7

810

11

12

13

14

15

Dependence graph (DG)

• Randomized incremental algorithms can
be parallelized
• Existing algorithms: Knuth’s shuffle [SGBFG’14],

Delaunay triangulation [BGSS’16, BGSS’18], 2D LP
[BGSS’16], …

• Depth of DG is 𝑂(log 𝑛) w.h.p.

• Parallel algorithm with polylog span (longest
dependence chain in algorithm)

• Iteration dependence graph (IDG)

• For convex hull
• No known result for the depth of DG

9

1 2 3

45 6

9

7

810

11

12

13

14

15

Dependence for Incremental Convex Hull

• Adding 𝒄 depends on v, w, x, y, z, t

• A point can depend on an
arbitrary number of other points

• Sequentially it’s OK: work adds up:
• Each point depends on a constant

number of other points on average,
the total work is bounded

• In parallel, if the fan-in of each
node contribute to the possible
#path in the DG multiplicatively
• Cannot bound the span

10

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

Revisit - Dependence for Incremental Convex Hull

Adding 𝒄 depends on … ?

More precisely: c-v depends on u-v and v-w, and c-z depends on a-z and z-t

11

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

An existing edge matters only
if it has a common endpoint

with the new edge.

• c-v and c-z don’t need to be added
together: asynchrony
• c-v can be added immediately, while

c-z needs to wait (a-z isn’t ready)

• Each edge depends on at most 2
other edges!
• Identify true dependences from false

dependences

u-v, v-w, and a-z, z-t

Let’s study edges instead
of points!

More relaxed/fine-grained
order to add edges!

Study the edges in convex hull –Configuration Space

Configuration space [CS’89, DK’89, Mulmuley’94]

• For incremental algorithms, studyjthe configurations
• E.g., triangles in Delaunay triangulations, edges in 2D convex hulls

• Objects: input elements (e.g., points for Delaunay triangulation or convex hull)

• Configurations
• Defining set: objects that defines a configuration

• Conflict set: objects that cannot co-exist with the configuration

12

Work-efficiency: total conflict set size can be bounded [CS’89]

Study the edges in convex hull –Configuration Space

• Points

• Edges
• 2 endpoints defining the edge

(d-1 points defining the facet in high D)

• Points visible from the edge

(that will remove the edge/facet)

13

Configuration space 2-D convex hulls

• Objects: input elements

• Configurations
• Defining set: objects that defines a

configuration

• Conflict set: objects that cannot co-exist
with the configuration

What about the analysis of span?

Work-efficiency: total conflict set size can be bounded [CS’89]

(Facets in high D)

Study the edges in convex hull – Configuration DG

14

Configuration space

2-D convex hulls

• Prove work-efficiency

Dependence graph

• Analyze parallel depth

Configuration-dependence-graph [this paper]

• Build dependence for configurations,
instead of iterations

• Build dependence for edges/facets,
instead of points

Generally

For convex hull

Configuration DG

• Each configuration is supported by at
most 𝒌 other configurations

18

Configuration-dependence-graph 2-D convex hulls

𝒌-support

• A configuration 𝒙 supports 𝒚 if 𝒚 depends on 𝒙

Theorem 1 (informally) (Shallow dependence for k support) A configuration

dependence graph with 𝑘-support (k is a constant) has depth 𝑂(log 𝑛) w.h.p., where
𝑛 is the number of objects.

d

• 𝒌 = 𝟐 is a constant
• 𝒌 = 𝟐 also for high dimensions

Revisit - Dependence for Incremental Convex Hull

Adding 𝒄 depends on … ?

u-v-w, and y-z-t

More precisely:

u-v and v-w support c-v

y-z and z-t support c-z

• c-v replaces v-w
• c-z replaces y-z
• c buries w-x and x-y

(false dependence)
19

v

w

x
y

z

u

t

c

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

Replace or Bury?

• The point 𝒑′ that will “change” the corner
• Visible from 𝑒1 or 𝑒2
• The earliest point in the random order

20

𝑒1 𝑒2
𝑝

𝑝′

• 𝒑′ in 𝑨
• visible from 𝒆𝟏 but not 𝒆𝟐
• 𝑒1-𝑝-𝑒2 at the boundary of

all edges 𝑝′ will remove

• 𝑝-𝑝′ *replace* 𝑒1
• The other edge incident on p’

will be processed by another
corner

𝐴

𝐵 𝐶𝑝′

• 𝒑′ in 𝑪 (symmetric)
• visible from 𝒆𝟐 but not 𝒆𝟏
• 𝑝-𝑝′ *replace* 𝑒2

Replace or Bury?

• The point 𝒑′ that will “change” the corner
• Visible from 𝑒1 or 𝑒2
• The earliest point in the random order

21

𝑒1 𝑒2
𝑝

• 𝒑′ in 𝑩
• visible from both 𝒆𝟏 and 𝒆𝟐
• 𝑒1-𝑝-𝑒2 in the middle of all

edges 𝑝′ will remove

• 𝑝′ *buries* 𝑒1 and 𝑒2

𝐴

𝐵 𝐶
𝑝′

More notes

• 𝒌-support with 𝒌 = 𝟐 still holds for higher dimensions.

• The parallel algorithm works similarly:
• Edge => Facets, Corner => Ridge

• For d dimensions with constant d:

• Work-efficient: 𝑂(𝑛
𝑑

2 + 𝑛 log 𝑛) expected work

• Polylog(n) span w.h.p. (the concrete form of bound depends on computational model)

• Algorithm doesn’t need to run in rounds
• Can run in divide-and-conquer manner in nested parallelism

22

Summary

Proved the low depth of dependence graph for parallel incremental convex hull

• 𝑂(log 𝑛) for 𝑛 objects w.h.p.

• Key technique: asynchrony and k-support
• Asynchrony: Build dependence on facets instead of points

• k-support: any facet depends on at most 𝑘 = 2 other facets – fewer dependences

Designed a parallel incremental algorithm for convex hull

• Work-efficient with polylog span, for d dimension with constant d

• Key technique: asynchrony and k-support
• Asynchrony: facets added by a point can be added in different rounds

• k-support: Allowing burying ridges/edges: avoid these “false” dependence

23

Summary

Proved the low depth of dependence graph for parallel incremental convex hull

• 𝑂(log 𝑛) for 𝑛 objects w.h.p.

Designed a parallel incremental algorithm for convex hull

• Work-efficient with polylog span, for d dimension with constant d

Key technique: asynchrony and k-support

• Technique applicable to any k-support configuration space
• When k is a constant, we can prove shallow depth: Degeneracy in 3D convex hull, half-

space intersection, unit circle intersection, …

• Problems remains open (not constant-support): trapezoid decomposition, MIS, …

25

Parallel incremental convex hull algorithm

• In each round:
• In parallel: look at each possible support set - a corner of two edges in 2D,

or a ridge of adjacent facets for high dimensions

• Process the corner/ridge to see if it will be removed (replaced/buried)

• Newly formed corners/ridges will be for the next round

• For any edge 𝑒, the point that will remove it in this round is:
• Among all points that are visible from 𝑒, the one with the highest priority

(consistent with sequential order)

• Call it the pivot point of 𝑒: pivot(e) - maintain the conflict set for each edge

28

Process corner (edge 𝒆𝟏, 𝒆𝟐 and point 𝒑)

Let 𝒑𝟏 = pivot(𝒆𝟏), 𝒑𝟐 = pivot(𝒆𝟐)

• Case 1: 𝒑𝟏 = 𝒑𝟐 = null no conflict points!
• This corner is finalized and will never be removed

• Return

29

𝑒1 𝑒2
𝑝

No point in this area

Process corner (edge 𝒆𝟏, 𝒆𝟐 and point 𝒑)

Let 𝒑𝟏 = pivot(𝒆𝟏), 𝒑𝟐 = pivot(𝒆𝟐)

• Case 2: 𝒑𝟏 has higher priority than 𝒑𝟐 (null has lowest priority)
• 𝑝1 is visible from 𝑒1, but not 𝑒2!

• 𝑝1-𝑝 depends on this corner 𝑒1-𝑝-𝑒2
• Create edge 𝑝-𝑝1, update its conflict set

• 𝑒1 will be replaced by 𝑝-𝑝1

30

𝑒1
𝑒2

𝑝

𝑝1

We don’t know what happened (or will
happen) to the other edge incident on 𝑝1,
but we don’t care in this process

Boundary of all edges
that 𝑝1 will remove

Process corner (edge 𝒆𝟏, 𝒆𝟐 and point 𝒑)

Let 𝒑𝟏 = pivot(𝒆𝟏), 𝒑𝟐 = pivot(𝒆𝟐)

• Case 3: 𝒑𝟐 has higher priority than 𝒑𝟏 (null has lowest priority)

Symmetric

31

Process corner (edge 𝒆𝟏, 𝒆𝟐 and point 𝒑)

Let 𝒑𝟏 = pivot(𝒆𝟏), 𝒑𝟐 = pivot(𝒆𝟐)

• Case 4: 𝒑𝟏 = 𝒑𝟐 = 𝒑′
• 𝑝′ is visible from both 𝑒1 and 𝑒2!

• The corner does not support any edge
incident on 𝑝′

• 𝑝′ buries 𝑒1-𝑝-𝑒2
• Delete 𝑒1-𝑝-𝑒2, return

32

𝑒1 𝑒2

𝑝

𝑝′

𝑝1 will be processed by other corners

Parallel incremental convex hull algorithm

• In each round:
• In parallel: look at each possible support set - a corner of two edges in 2D,

or a ridge of adjacent facets for high dimensions

• Process the corner/ridge to see if it will be removed (replaced/buried)

• Newly formed corners/ridges will be for the next round

33

Process corner – form new corners

How is a new corner formed?

• The new corner 𝒑𝟏-𝒑-𝒙 directly formed: process in the next round

• What about the corner at 𝒑𝟏?

34

𝑒1 𝑒2

𝑝

𝑝1

What happened (or will happen) to the
other edge incident on 𝑝1?

𝑥

Process corner – form new corners

How is a new corner formed?

• The new corner 𝒑𝟏-𝒑-𝒙 directly formed: process in the next round

• What about the corner at 𝒑𝟏?

• Two edge form a corner: the later one comes makes the corner
ready to be processed

• Use a parallel hash table
• Let the two edges synchronize

35

𝑒1 𝑒2

𝑝1

If the other edge 𝑝-𝑝′ already exists, add
the corner 𝑝′-𝑝1-𝑝 to be processed in
the next round

𝑝

𝑥

Running example
• The earliest visible point from an edge 𝒆 or a corner 𝒆𝟏-𝒑-𝒆𝟐:

among all the points visible from the corresponding edges, the one
that appears the earliest in the random order.
• The first one that will be process in sequential order

36

Running example

37

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

• u-v-w: support c-v
=> c-v replaces v-w
• v-w-x: support w-b
=> w-b replaces wx
• w-x-y: support x-a
=>x-a replaces xy
• x-y-z: buried by a
=> remove x-y and y-z
• y-z-t: support a-z
=> z-a replaces y-z

Running example

39

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

• u-v-w: support c-v
=> c-v replaces v-w
• v-w-x: support w-b
=> w-b replaces wx
• w-x-y: support x-a
=>x-a replaces xy
• x-y-z: buried by a
=> remove x-y and y-z
• y-z-t: support a-z
=> z-a replaces y-z

Running example

40

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

• x-a-z: support b-a
=> b-a replaces x-y
• a-z-t: support c-t
=> c-z replaces a-z

Running example

41

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

• x-a-z: support b-a
=> b-a replaces x-y
• a-z-t: support c-t
=> c-z replaces a-z

Running example

42

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

• w-b-a: buried by c
=> Remove w-b and b-a
• v-c-z: no point visible
=> return

Running example

43

v

w

x
y

z

u

t

c

a
b

Existing hull: u-v-w-x-y-z-t, adding a, b, c in order

• w-b-a: buried by c
=> Remove w-b and b-a
• v-c-z: no point visible
=> return

	幻灯片 1: Randomized Incremental Convex Hull is Highly Parallel
	幻灯片 2: Convex Hull
	幻灯片 3: Our contribution
	幻灯片 4: Convex Hull Algorithms
	幻灯片 5: Convex Hull Algorithms
	幻灯片 6: Randomized incremental convex hull algorithm
	幻灯片 7: Randomized incremental convex hull algorithm
	幻灯片 8: Dependence graph (DG)
	幻灯片 9: Dependence graph (DG)
	幻灯片 10: Dependence for Incremental Convex Hull
	幻灯片 11: Revisit - Dependence for Incremental Convex Hull
	幻灯片 12: Study the edges in convex hull –Configuration Space
	幻灯片 13: Study the edges in convex hull –Configuration Space
	幻灯片 14: Study the edges in convex hull – Configuration DG
	幻灯片 18: Configuration DG
	幻灯片 19: Revisit - Dependence for Incremental Convex Hull
	幻灯片 20: Replace or Bury?
	幻灯片 21: Replace or Bury?
	幻灯片 22: More notes
	幻灯片 23: Summary
	幻灯片 25: Summary
	幻灯片 28: Parallel incremental convex hull algorithm
	幻灯片 29: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 30: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 31: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 32: Process corner (edge 加粗斜体 e 下标 粗体 1 , 加粗斜体 e 下标 粗体 2 and point 加粗斜体 p)
	幻灯片 33: Parallel incremental convex hull algorithm
	幻灯片 34: Process corner – form new corners
	幻灯片 35: Process corner – form new corners
	幻灯片 36: Running example
	幻灯片 37: Running example
	幻灯片 39: Running example
	幻灯片 40: Running example
	幻灯片 41: Running example
	幻灯片 42: Running example
	幻灯片 43: Running example

