Optimal Parallel Algorithms
in the Binary-Forking Model

A joint work with

Yan Gu, UC Riverside
SPAA 2020 (virtual)

Full version of thls talk (40 min): :
https://www.cs.ucr.edu/~ygu/video/bf.mp4
(or just search “Yan Gu UCR")

https://www.cs.ucr.edu/~ygu/bf.mp4
https://www.cs.ucr.edu/~ygu/bf.mp4
https://www.cs.ucr.edu/~ygu/bf.mp4

The binary-forking model

Don’t we have lots of computational models already?
Why more?

Optimal algorithms in the new model

Sorting/semisorting, list/tree contraction, set operations
(union, intersect, difference), random permutation, RMQ, etc.

Are they useful and inspiring?

A

Development of :
parallel hardware 2020

(from 2005) — f 4 <ockete.
: i“tel) 1 of up to 4 sockets:
Intel® Xeon Phi™ WAIKW I i 28 cores
T ‘ | p)L(E,C,zll}'M 56 threads
D |l inside” 38.5MB LLC
72 cores . @teJ ! Up to 4.5 TB memory
(288 threads) l XEON PHI'||

For computation

inside”
intensive applications g

i
y
vnrrrnm o

[GBSS'15, OKFS'19, AWFS'17, CBB+15, '
ABPS'5, BGS'0, BGHS'12, RPC+1], & AL) 0P, Cilk Javaforicoin, X0
SBF+12, MSL+15 @ Intel TBB, PBBS, MCSTL,
' Shared-memory g3y
P

arallel software and
Implementations

AerospikeDBS, Ancelus, Apache
Ignite, ArangoDB, Hyper, Kinetica,
MemSQL, SQLite, IMDB, SQL Server,
Monet DB, SAP HANA, VoltDB, ...

Ligra, Ligra+, Graphit, Julienne, Aspen, GBBS,
Galois, STINGER, PRISM, X-Stream, Ringo,
TurboGraph, FlashGraph, Kaskade, Sage, ...

I

PLATINUM

[BFGS12, BFS'16, SB14, LSB16, AF16, | | 7= Development of
SB19, YRPOT, BFF+07, DBS19, EKS14,..] =l = parallel hardware
& (from 2005)

Th.eo;'y of p.are;lll computlng E |
N

'ww - |

OpemMP, Cilk, Java fork-join, XI0,

ABPS'5, BGS10, BGHS12, RPC+11, A\ @_‘\ S
& Intel TBB, PBBS, MCSTL,

SBF+12, MSL+15

[GBSS'15, OKFS'19, AWFS'17, CBB+15, .‘

Shared-memory
parallel software and

AerospikeDBS, Ancelus, Apache implementations

Ignite, ArangoDB, Hyper, Kinetica,
MemSQL, SQLite, IMDB, SQL Server,
Monet DB, SAP HANA, VoltDB, ...

> Ligra, Ligra+, Graphlt, Julienne, Aspen, GBBS,
Galois, STINGER, PRISM, X-Stream, Ringo,
TurboGraph, FlashGraph, Kaskade, Sage, ...

Development of
parallel hardware
(from 2005)

[BFGS'12, BFS'16, SB14, LSB16, AF16,
SB19, YRP07, BFF+07, DBS'19, EKS'14, ..]

L PAdLLEL
| ALGoRITHS

of parallel computing
(starting from ~19705)

Is PRAM still the best model for designing and
analyzing algorithms today?

Processors run in lockstep on a PRAM
(ARBITRARY-CRCW, PRIORITY-CRCW,
CREW, EREW, CRQW, etc.)

Processors are highly synchronized

PRAM
(~1980)

However, modern architecture is highly asynchronous

As you can see, threads are highly asynchronous.

Real architecture: processor
rates vary significantly due to

cache effects
processor pipelines
ILP

vectorization
branch prediction
hyper-threading
overclocking
iInterrupts

Global synchronization can be extremely costly

As you can see, threads are highly asynchronous.

Real architecture: processor
rates vary significantly due to
e cache effects

processor pipelines

« |LP

* vectorization

« branch prediction

* hyper-threading

« overclocking

* interrupts

Global synchronization can be extremely costly

10° arithmetic operations in total
Adding periodical global synchronization

About logn, About log? n,
0.7-1.7x 5-13x

A\IQPI‘\QG!‘I I\\IQFhQGf’I

BSP model: give synchronization a higher weight
MPC model: only minimize synchronization rounds

Asynchronized PRAM: synchronize only when needed

The multithreaded models [BL99, ABPO1]

A class of models

The computational models for many recent parallel algorithms (a short list:

)

Yesterday'’s tutorial #1 (OpenCilk): programming language and interface,
runtime supports

Yesterday'’s tutorial #2 (parallel trees): efficient tree algorithms both
theoretically and practically

The parallel model in

10

The multithreaded model in CLRS

Similar to a RAM, working on a shared-memory

A fork instruction creates two subtasks that can
be run in parallel

After they finish, they join and continue

Assumes race-free

Or allows some atomic operations such as Test&Set,
Compare&Swap, and Fetch&Add

11

The multithreaded model in CLRS

Similar to a RAM, working on a shared-memory

A fork instruction creates two subtasks that can
be run in parallel

After they finish, they join and continue
Assumes race-free

An algorithm is measured by work (#operations) W
and span/depth (longest dependence) D

Binary Fork-Join Model

12

Why multithreaded models?

Supported by existing libraries such as Cilk,
OpenMP, TBB, Java Fork-Join, X10, TPL,
Habanero

Have good theoretical guarantee when mapping
to hardware

Incur O(PD) “steals” whp using a randomized
Work/-'atgaliﬁ scheduler (under mild assumptions)

#processors Span/depth

The computation is highly
asynchronous

13

Why revisit multithreaded models?

» Decision 1: binary forking vs. n-ary forking
» Decision 2: nested join vs. non-nested join

» Decision 3: race-free vs. assuming Test&Set vs.
assuming Compare&Swap vs. assuming Fetch&Add

14

Rest of this talk

2

The binary-forking model

Algorithm design inspired In
the asynchronous setting

15

The binary-forking (BF) model

Fork generates two subtasks

Assumes Test&Set

Atomically set a bit flag from 0 to 1
Weakest consensus primitive (consensus number: 2)

Test&Set can be used to implement Join '
m done!

Q

0 (ofithe

predecessors is
ready)

I’m done!

L

Got it! You are the
latter one. Please take
over and continue!

16

Q1: why binary when forking?

In practice, that's how most existing software is
implemented

Arbitrary forking = global synchronization

o
<
o

17

Q1: why binary when forking?

In practice, that's how most existing software is
implemented

Arbitrary forking can abuse global synchronization
(no difference as compared to the PRAM model)

For dynamic work-stealing schedulers, most
efficient scheduling results (e.g., [BL99, ABPO1,
ABBO02]) hold only for binary forking

O(PD) “steals” whp (0 (% + D) time)

Otherwise, the span bound can increase by
O (logn)

18

Q2: is nested join necessary?

o Easy to implement
o Cilk: cilk_spawn A(); B(); cilk_sync;
» Lambda: par_do([&] (){A();}, [&]I(){B();});

19

Q2: is nested join necessary?

Easy to implement
Cilk: cilk_spawn A(); B(); cilk_sync;
Lambda: par_do([&](){A();}, [&I(){B();1});

Scheduling results for work-stealing (e.g., [ABPO1,

ABBO02]) do not require nested join

In BF model, Test&Set allows non-nested join

I’'m done!
) O
®

20

Q3: Why assume Test&Set?

What is Test&Set?

Atomically set a bit flag from 0 to 1
Weakest consensus primitive (consensus number: 2)

Join needs at least Test&Set
Two threads need to reach consensus
No stronger assumptions for real hardware

Real architecture supports Test&Set

21

The binary-forking (BF) model

Fork is binary

Assumes Test&Set

Atomically set a bit flag from 0 to 1
Simplest consensus primitive (consensus number: 2)

Test&Set can be used to implement Join
(non-nested join)

Theoretical scheduling guarantees still hold

Incur O(PD) “steals” whp using a randomized work-
stealing scheduler

22

The two derived models

The binary fork-join model [cLRrs, 3 edition]
Assumes Join as a primitive, instead of Test&Set

Additional guarantees for race-free and determinism

The binary-forking model with CAS

Assumes Compare&Swap, a stronger consensus primitive
(consensus number:)

Easier for practical programming

23

Outline of this talk

2

The binary-forking model

Algorithm design inspired In
the asynchronous setting

24

Some PRAM algorithms are already optimal, but not all

Lower bound: Q(logn) span for algorithm with Q(n) work
A parallel-for of size n has 0(logn) span in the BF model
Reduce, scan, filter are already optimal

Cole’s ingenious PRAM mergesort requires 0 (logn) rounds
Span on BF model is 0(logn) - 0(logn) = 0(log? n), the same as a normal mergesort

Asynchronous samplesort [BGS10, BAD20] with o(log? n) span is faster in practice

25

Optimal parallel algorithms in the BF model

O(logn) span =» none or a
constant number of global
synchronization

New results for all these
fundamental problems

Surprisingly, these algorithms
are all quite simple

Problem Work
Comparison sort O(nlogn)’
Semisort o(n)’
Random permutation o(n)’
Range minimum query 0(n)
Tree contraction 0(n)

Ordered-set Operations ((2))
(Union, intersect, diff) 0(mlog m+1

"expected, " with high probability

26

Synthesis of Parallel Algorithms
List ranking

Contents
SYNTHESIS
= f Introduction 1
- > John H. Reif
o Prefix sum (scan) "
£ : PARTI FUNDAMENTAL PARALLEL GRAPH ALGORITHMS 33
ALGORITHMS Prefix Sums and Their Applications 35
' Guy E. Blelloch
) 2 Introduction to Parallel Connectivity, List Ranking, and 61
[1I 2’ 3’ 4’ 5] [1l 3’ 6[Euler Tour Techniques
Sara Baase
3 Lisc Ranking and Parallel Tree Contraction 115
Margaret Reid-Miller, Gary L. Miller, and Francesmary Modugno
(®) L| St Fan k| N g PARTII ADVANCED PARALLEL GRAPH ALGORITHMS 195
4 Randomized Parallel Connectivity 197
Hillel Gazit
5 Advanced Parallel Prefix-sums, List Ranking and Connectivity 215
1 e 3) 6 q—.104—>15 Uzi Vishkin
6 Parallel Lowest Common Ancestor Computation 259
Baruch Schieber
7 Parallel Open Ear Decomposition with Applications to 275
Graph Biconnectivity and Triconnectivity
Vijaya Ramachandran
8 Parallel Algorithms for Chordal Graphs 341
Philip Klein
PARTIII PARALLEL SORTING AND COMPUTATIONAL GEOMETRY 409
9 Random Sampling Techniques and Parallel Algorithm Design 411
Sandeep Sen and Sanguthevar Rajasekaran
10 Parallel Merge Sort 453

Richard Cole

The splice operation for list ranking

28

The splice operation for list ranking

29

The splice operation for list ranking

30

The splice operation for list ranking

1 -1 3 "/
1 3 9)

31

The splice operation for list ranking

1 3 5
3

32

The splice operation for list ranking

1 3 110
3 S

List contraction + Reconstruction = List Ranking

l

Use splice operation to contract the list and generate
a tree with shallow (ideally O(logn)) depth

33

List contraction

Have been studied for decades [AM13, Baase93, CV86, JaJag92, JLS14,
KR90, Ranade98, RMM93, SGB+15, Vishkin84, Vishkin93, Wyllie79]

The optimal ones (on PRAM) are complicated
The practical ones are not theoretically efficient

All existing algorithms requires Q(logn) rounds of global
synchronization

Goal: simple, both theoretically and practically efficient algorithm,
using no global synchronization

34

Motivation from [SGB*15]

Conceptually simple and practically efficient

- [- [i » P =
< » < » < — < |

Motivation from [SGB*15] Random priorities

o Conceptually simple and practically efficient 4
o047+ 15— 210 — 3 — 0

)

Lowest priority

Motivation from [SGB*15]

Conceptually simple and practically efficient

o0 M4l 71l 52
0

Motivation from [SGB*15]

Conceptually sim

dle and practically efficient

[<
» <

e

__
»

| 7
1

19
2

Round 1

38

Motivation from [SGB*15]

Conceptually simple and practically efficient

5

{7
1 0 N

Round 2

39

Motivation from [SGB*15]

Conceptually simple and practically efficient

5

{7
1 0 N

Round 3

40

Motivation from [SGB*15]

Conceptually simple and practically efficient

ﬂ%
<4
\4
0 5

Round 4

41

Motivation from [SGB*15]

Conceptually simple and practically efficient

ﬂ%
<4
\4
0 5

Give a random priority to each node
While not fully contracted
Contract all feasible nodes in parallel

Pack the rest of the nodes

42

Tree height is ©(logn) whp [sGB*15],
the same as a randomized BST
(or treap, quicksort)

e ;
o/ 1/5 2 \3

Dependency between splices

Give a random priority to each node
While not fully contracted Disadvantages:
Contract all feasible nodes in parallel * Q(logn) rounds of synchronization

Pack the rest of the nodes * Need to pack in every round

43

Asynchrony in splicing

44

Asynchrony in splicing

o0 4 l—7 " 5
0 1 2

Round 1

45

Asynchrony in splicing

46

Asynchrony in splicing

BSn

CAN START

/

In progress

"/ (S
1 2

N

Already done

Haven't started

47

Asynchrony in splicing

BSn

/

In progress

o/
B RO

N

Already done

Haven't started

48

New list contraction algorithm

49

New list contraction algorithm

s
o/ 1/5

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

I; i | i 0: waiting for two children
New list contraction algorithm 1: waiting for one child

0 2: waiting for no children
1/ 7 0

A 0 2
§ / 2 V4 SR 2 \ 3

N

set the flag for each node -
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

51

0: waiting for two children
1: waiting for one child

\z

New list contraction algorithm
0

I4
2

v

set the flag for each node
parallel-for each node v do
if v is leaf then D —
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

52

0: waiting for two children
1: waiting for one child

T T — s
il e

e

New list contraction algorithm

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
If Test&Set(v.flag) then break <

53

New list contraction algorithm

0: waiting for two children

1: waiting for one child

7 0
4 w
)

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

\z

54

New list contraction algorithm

0: waiting for two children

1: waiting for one child

7 0
4 w
)

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

\z

55

0: waiting for two children

New list contraction algorithm 1: waiting for one child

14

set the flag for each node

parallel-for each node v do No paCkmg
if v is leaf then
while list is not empty do
splice v out No QIObaI
v « v.prev or v.next with smaller priority synch ronization

if Test&Set(v.flag) then break

56

0: waiting for two children

New list contraction algorithm 1: waiting for one child

1
/ 1
oS 6
S
set the flag for each node ‘onrSt'Case
parallel-for each node v do _
if v is leaf then Work: 0(n)
while list is not empty do _
splice v out — Span: O(logn) whp

v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

57

Extremely simple to implement (<20 lines)

1 Hvoid listRanking(node *A&, intT n) {
2 char* R = new char[n];
3 parallel for (intT i=0; i1 < n; 1i++)
set the flag for each node 4 R[i] = (A[i].pri < A[A[i].prev].pri) || (A[i].pri < A[A[i].next].pri);
para"el_for eaCh nOde v do 5 B parallel for (intT i=0; i < n; i++) if (R[i] <= 1) {
. 6 intT ¢ = i, prev = Alc].prev, next = A[i].next;
if v is leaf then 7 E if ((A[i].pri < Alprev].pri) && (A[i].pri < A[next]l.pri)) {
. . . 8 H while (A[c].prev != n || A[lc].next '= n) {
while list is not empty do Alnext] prov = prev;
Sp“Ce v Out 10 A[prev] .next = next;
. 11 Rl[c] = 2;
VU & U.prev or v'neXt Wlth 12 c = Alprev] ..pri < A[next].pri ? prev : next;
smaller priority 13 if (utils::CAS(&R[c], (char)0, (char)l)) break;
if Test&Set(v.flag) then break . | [Prey T plelprevy mest = atel nexty
le + }
17 + }
18 delete[] R;
19 }

58

More efficient than the highly optimized code in
PBBS from [SGB*15]

- g++ with Cilk
Input size Running time (s) Improved ©On 72 cores
(million) New PBBS by
algorithm version o
10 0.039 0.082 110% Saved by avoiding
synchronization
20 0.094 0.16 70% \ (more when input is small)
50 0.23 0.38 65%
100 0.91 0.72 41 ZA) Saved by avoiding
200 1.11 153 38% packing

500 2.85 3.85 35% < (consistent for all cases)

59

Summary for the new list contraction algorithm

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out

v « v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

6
3

Simple both conceptually and practically (rely on Test&Set)

Efficient both theoretical

y and practically

Highly asynchronous anc

not round based

60

Why so simple? Anything more general?

o Challenge in parallelism: dependencies
« Classic solution: divide-and-conquer, round-based /

e

61

Why so simple? Anything more general?

Challenge in parallelism: dependencies /
Classic solution: divide-and-conquer, round-based / /

What if we directly convert dependence structure to the computational DAG?

The rest of the work is done by the work-stealing scheduler!
Works for constant dependencies per node via Test&Set

Simple algorithms: List contraction, tree contraction, random permutation, sequence
algorithms (e.g., RMQ), dynamic programs

Idea combined with configuration space [Mulmuley 1994] solved open problems:
incremental Delaunay triangulation [JacM 20201, convex hull [sPAA 20207 (a
general framework for analyzing this type of algorithms)

62

A new angle for (asynchronized) parallel algorithms

Gleoretical

-

Binary-forking model

\

™

-

innovations | D€Pendence Computational
in the literature Structure | - DAG
"NGess16BGSs20,FNTRIS Parer g
Y pRRREn § = Sommunie
4 4 v)
Configuration Work-Stealing
Space / RIC Scheduler
\ _ \ / . l j/
4) 4) 4) 4)
Good Work Simple Good practical
Parallelism efficiency algorithms performance
_ J _ J g J _ J

63

Other optimal parallel algorithms in the BF model

Problem Work jep:tnr:

List contraction O(n O(logn)*
Sorting O(nlogn)’ O(logn)*
Semisort o(n)’ 0(logn)*
Random permutation o(n)’ 0(logn)*
Range minimum query 0(n) O(logn)
Tree contraction 0(n) O(logn)*

Ordered-set operations

n
(Union, intersect, diff) (m log (g T 1)) O(logn)

"expected, " with high probability

64

Complexity results

Let BF! be the class of algorithms requiring 0(log n) depth/span and
polynomial work in the BF model

NCt €c LS BFc ACY € PRAM poyy S N C?

Let BF (W (n),S(n)) be the class of algorithms requiring S(n) depth/span and
W(n) work

BF G BF € BFcps

Fork-join

[Manuscript from GJS]

65

Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided if possible

1 > The binary-forking model and variants

Our suggested model to design and analysis algorithms,
and related complexity results

2 > Optimal algorithms in the new model

All use no or constant rounds of global synchronization
Many are surprisingly simple

66

Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided if possible

1 > The binary-forking model and variants

Our suggested model to design and analysis algorithms,
and related complexity results

2 - Optimal algorithms in the new model

All use no or constant rounds of global synchronization
Many are surprisingly simple

Future work on exploring asynchrony in parallel algorithms

Complexity, algorithms, implementation, software, etc.
6/

Modern parallel machines are highly asynchronous, and global
/ Full version of this talk (40 min):
https://www.cs.ucr.edu/~ygu/video/bf.mp4

(or just search “Yan Gu UCR")

Motivations from system and architecture (1:00 — 3:20)
Benchmarking global synchronization cost (4:30 — 6:30)
More discussion for multithreaded models (11:30 — 18:00)
Complexity theory (18:00 — 19:00)

Related work in the BF model (19:00 — 21:20)

List contraction in more details (22:00 — 33:00)

How does this idea generalize to other problems (33:00 — 36:00)
\Comparison sort and ordered-set operations (36:40 — 38:(&

68

Various anecdotes (random places)

https://www.cs.ucr.edu/~ygu/video/bf.mp4
https://www.cs.ucr.edu/~ygu/video/bf.mp4
https://www.cs.ucr.edu/~ygu/video/bf.mp4

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10: The multithreaded models [BL99, ABP01]
	幻灯片 11: The multithreaded model in CLRS
	幻灯片 12: The multithreaded model in CLRS
	幻灯片 13: Why multithreaded models?
	幻灯片 14: Why revisit multithreaded models?
	幻灯片 15: Rest of this talk
	幻灯片 16: The binary-forking (BF) model
	幻灯片 17: Q1: why binary when forking?
	幻灯片 18: Q1: why binary when forking?
	幻灯片 19: Q2: is nested join necessary?
	幻灯片 20: Q2: is nested join necessary?
	幻灯片 21: Q3: Why assume Test&Set?
	幻灯片 22: The binary-forking (BF) model
	幻灯片 23: The two derived models
	幻灯片 24: Outline of this talk
	幻灯片 25: Some PRAM algorithms are already optimal, but not all
	幻灯片 26: Optimal parallel algorithms in the BF model
	幻灯片 27: List ranking
	幻灯片 28: The splice operation for list ranking
	幻灯片 29: The splice operation for list ranking
	幻灯片 30: The splice operation for list ranking
	幻灯片 31: The splice operation for list ranking
	幻灯片 32: The splice operation for list ranking
	幻灯片 33: The splice operation for list ranking
	幻灯片 34: List contraction
	幻灯片 35: Motivation from [SGB+15]
	幻灯片 36: Motivation from [SGB+15]
	幻灯片 37: Motivation from [SGB+15]
	幻灯片 38: Motivation from [SGB+15]
	幻灯片 39: Motivation from [SGB+15]
	幻灯片 40: Motivation from [SGB+15]
	幻灯片 41: Motivation from [SGB+15]
	幻灯片 42: Motivation from [SGB+15]
	幻灯片 43: Dependency between splices
	幻灯片 44: Asynchrony in splicing
	幻灯片 45: Asynchrony in splicing
	幻灯片 46: Asynchrony in splicing
	幻灯片 47: Asynchrony in splicing
	幻灯片 48: Asynchrony in splicing
	幻灯片 49: New list contraction algorithm
	幻灯片 50: New list contraction algorithm
	幻灯片 51: New list contraction algorithm
	幻灯片 52: New list contraction algorithm
	幻灯片 53: New list contraction algorithm
	幻灯片 54: New list contraction algorithm
	幻灯片 55: New list contraction algorithm
	幻灯片 56: New list contraction algorithm
	幻灯片 57: New list contraction algorithm
	幻灯片 58: Extremely simple to implement (<20 lines)
	幻灯片 59: More efficient than the highly optimized code in PBBS from [SGB+15]
	幻灯片 60: Summary for the new list contraction algorithm
	幻灯片 61: Why so simple? Anything more general?
	幻灯片 62: Why so simple? Anything more general?
	幻灯片 63: A new angle for (asynchronized) parallel algorithms
	幻灯片 64: Other optimal parallel algorithms in the BF model
	幻灯片 65: Complexity results
	幻灯片 66: Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided if possible
	幻灯片 67: Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided if possible
	幻灯片 68: Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided is possible

