
Optimal Parallel Algorithms

in the Binary-Forking Model

Yan Gu, UC Riverside

SPAA 2020 (virtual)

July 15, 2020

A joint work with

Guy Blelloch, Jeremy Fineman, Yihan Sun

 CMU Georgetown UC Riverside

Full version of this talk (40 min):

https://www.cs.ucr.edu/~ygu/video/bf.mp4

(or just search “Yan Gu UCR”)

https://www.cs.ucr.edu/~ygu/bf.mp4
https://www.cs.ucr.edu/~ygu/bf.mp4
https://www.cs.ucr.edu/~ygu/bf.mp4

Sorting/semisorting, list/tree contraction, set operations

(union, intersect, difference), random permutation, RMQ, etc.

Don’t we have lots of computational models already?

Why more?

2

The binary-forking model1

Optimal algorithms in the new model2

Are they useful and inspiring?

3

Intel® Xeon® Platinum 826020202020

Intel® Core 2 Duo (E6320) /
AMD Athlon 64 X220052005

Intel® Xeon Phi 20172017
1 of up to 4 sockets:

28 cores

56 threads

38.5 MB LLC

Up to 4.5 TB memory72 cores

 (288 threads)

For computation

intensive applications

Development of
parallel hardware
(from 2005)

Programming languages
and toolboxes
OpemMP, Cilk, Java fork-join, X10,
Intel TBB, PBBS, MCSTL, ……

Parallel graph processing
Ligra, Ligra+, GraphIt, Julienne, Aspen, GBBS,
Galois, STINGER, PRISM, X-Stream, Ringo,
TurboGraph, FlashGraph, Kaskade, Sage, …

Parallel sorting
[GBSS’15, OKFS’19, AWFS’17, CBB+’15,

ABPS’15, BGS’10, BGHS’12, RPC+’11,
SBF+’12, MSL+’15 ……]

Parallel data structure
[BFGS’12, BFS’16, SB’14, LSB’16, AF’16,

SB’19, YRP’07, BFF+’07, DBS’19, EKS’14, …]

Theory of parallel computing
(starting from ~1970s)

Shared-memory
parallel software and

implementations

In-memory databases
AerospikeDBS, Ancelus, Apache

Ignite, ArangoDB, Hyper, Kinetica,
MemSQL, SQLite, IMDB, SQL Server,

Monet DB, SAP HANA, VoltDB, …

Development of
parallel hardware

(from 2005)

4

Programming languages
and toolboxes
OpemMP, Cilk, Java fork-join, X10,
Intel TBB, PBBS, MCSTL, ……

Parallel graph processing
Ligra, Ligra+, GraphIt, Julienne, Aspen, GBBS,
Galois, STINGER, PRISM, X-Stream, Ringo,
TurboGraph, FlashGraph, Kaskade, Sage, …

Parallel data structure
[BFGS’12, BFS’16, SB’14, LSB’16, AF’16,

SB’19, YRP’07, BFF+’07, DBS’19, EKS’14, …]

Theory of parallel computing
(starting from ~1970s)

PRAM model
and

PRAM algorithms

Shared memory

P1 P2 Pn

Parallel sorting
[GBSS’15, OKFS’19, AWFS’17, CBB+’15,

ABPS’15, BGS’10, BGHS’12, RPC+’11,
SBF+’12, MSL+’15 ……]

In-memory databases
AerospikeDBS, Ancelus, Apache

Ignite, ArangoDB, Hyper, Kinetica,
MemSQL, SQLite, IMDB, SQL Server,

Monet DB, SAP HANA, VoltDB, …

Development of
parallel hardware

(from 2005)

5

Shared-memory
parallel software and

implementations

Processors run in lockstep on a PRAM

(ARBITRARY-CRCW, PRIORITY-CRCW,

CREW, EREW, CRQW, etc.)

Processors are highly synchronized

6

Shared memory

P1 P2 Pn

PRAM

(~1980)

Is PRAM still the best model for designing and

analyzing algorithms today?

Real architecture: processor

rates vary significantly due to

• cache effects

• processor pipelines

• ILP

• vectorization

• branch prediction

• hyper-threading

• overclocking

• interrupts

• ……

7

However, modern architecture is highly asynchronous

WHO ARE WE?

……

Threads!

……

Running in parallel!

Threads!

WHAT DO WE WANT?

HOW CAN WE

ACHIEVE IT?

As you can see, threads are highly asynchronous.

8

Global synchronization can be extremely costly

WHO ARE WE?

……

Threads!

……

Running in parallel!

Threads!

WHAT DO WE WANT?

HOW CAN WE

ACHIEVE IT?

As you can see, threads are highly asynchronous.

Real architecture: processor

rates vary significantly due to

• cache effects

• processor pipelines

• ILP

• vectorization

• branch prediction

• hyper-threading

• overclocking

• interrupts

• ……

 109 arithmetic operations in total

 Adding periodical global synchronization

9

About log2 𝑛,

5-13x

overhead

About log 𝑛,

0.7-1.7x

overhead

g++ with Cilk

on 72 cores

0

100

200

300

400

1 10 100 1000

#synchronization rounds

R
u
n

ti
m

e
 (

m
s
)

BSP model: give synchronization a higher weight

MPC model: only minimize synchronization rounds

Asynchronized PRAM: synchronize only when needed

Global synchronization can be extremely costly

 A class of models

 The computational models for many recent parallel algorithms (a short list:
[ABB02, AFL+14, BFGS11, BG04, BGS10, BR98, BGSS20, BST12, BL99, CGTT17,

CRSB13, CR17, DST16, TYK+15])

 Yesterday’s tutorial #1 (OpenCilk): programming language and interface,
runtime supports [BL99, HLL10, SKL+15, SML19]

 Yesterday’s tutorial #2 (parallel trees): efficient tree algorithms both
theoretically and practically [BFS16, SB19, SBLP19, SFB18]

 The parallel model in [CLRS, 3rd edition]

The multithreaded models [BL99, ABP01]

10

 Similar to a RAM, working on a shared-memory

 A fork instruction creates two subtasks that can

be run in parallel

 After they finish, they join and continue

 Assumes race-free

 Or allows some atomic operations such as Test&Set,
Compare&Swap, and Fetch&Add

The multithreaded model in CLRS

11

A[3]=3

A[3]=4

A[3]=?

 Similar to a RAM, working on a shared-memory

 A fork instruction creates two subtasks that can

be run in parallel

 After they finish, they join and continue

 Assumes race-free

 An algorithm is measured by work (#operations) 𝑊
and span/depth (longest dependence) 𝐷

The multithreaded model in CLRS

12

Binary Fork-Join Model

Span/depth

Why multithreaded models?

13

#processors

 Supported by existing libraries such as Cilk,
OpenMP, TBB, Java Fork-Join, X10, TPL,
Habanero

 Have good theoretical guarantee when mapping
to hardware

 Incur 𝑂 𝑃𝐷 “steals” whp using a randomized

work-stealing scheduler (under mild assumptions)

The computation is highly
asynchronous

Why revisit multithreaded models?

14

➢ Decision 1: binary forking vs. 𝒏-ary forking

➢ Decision 2: nested join vs. non-nested join

➢ Decision 3: race-free vs. assuming Test&Set vs.

assuming Compare&Swap vs. assuming Fetch&Add

Rest of this talk

15

The binary-forking model1

2 Algorithm design inspired in

the asynchronous setting

 Fork generates two subtasks

 Assumes Test&Set

 Atomically set a bit flag from 0 to 1

 Weakest consensus primitive (consensus number: 2)

 Test&Set can be used to implement Join

The binary-forking (BF) model

16

01

I’m done!

Got it! The other one

hasn’t finished yet. You

can terminate now!

I’m done!

Got it! You are the

latter one. Please take

over and continue!

(None of the

predecessors is

ready)

One

 In practice, that’s how most existing software is
implemented

 Arbitrary forking = global synchronization

Q1: why binary when forking?

17

 In practice, that’s how most existing software is
implemented

 Arbitrary forking can abuse global synchronization
(no difference as compared to the PRAM model)

 For dynamic work-stealing schedulers, most
efficient scheduling results (e.g., [BL99, ABP01,
ABB02]) hold only for binary forking

 𝑂 𝑃𝐷 “steals” whp (𝑂
𝑊

𝑃
+ 𝐷 time)

 Otherwise, the span bound can increase by
𝑂(log 𝑛)

Q1: why binary when forking?

18

 Easy to implement

 Cilk: cilk_spawn A(); B(); cilk_sync;

 Lambda: par_do([&](){A();}, [&](){B();});

Q2: is nested join necessary?

19

 Easy to implement

 Cilk: cilk_spawn A(); B(); cilk_sync;

 Lambda: par_do([&](){A();}, [&](){B();});

 Scheduling results for work-stealing (e.g., [ABP01,
ABB02]) do not require nested join

 In BF model, Test&Set allows non-nested join

Q2: is nested join necessary?

20

01

I’m done!I’m done!

 What is Test&Set?

 Atomically set a bit flag from 0 to 1

 Weakest consensus primitive (consensus number: 2)

 Join needs at least Test&Set

 Two threads need to reach consensus

 No stronger assumptions for real hardware

 Real architecture supports Test&Set

Q3: Why assume Test&Set?

21

 Fork is binary

 Assumes Test&Set

 Atomically set a bit flag from 0 to 1

 Simplest consensus primitive (consensus number: 2)

 Test&Set can be used to implement Join

(non-nested join)

 Theoretical scheduling guarantees still hold

 Incur 𝑂 𝑃𝐷 “steals” whp using a randomized work-

stealing scheduler

The binary-forking (BF) model

22

The binary fork-join model [CLRS, 3rd edition]

 Assumes Join as a primitive, instead of Test&Set

 Additional guarantees for race-free and determinism

The binary-forking model with CAS

 Assumes Compare&Swap, a stronger consensus primitive

(consensus number: ∞)

 Easier for practical programming

The two derived models

23

Outline of this talk

24

The binary-forking model1

2 Algorithm design inspired in

the asynchronous setting

 Lower bound: Ω log 𝑛 span for algorithm with Ω 𝑛 work

 A parallel-for of size 𝑛 has 𝑂 log 𝑛 span in the BF model

 Reduce, scan, filter are already optimal

 Cole’s ingenious PRAM mergesort requires 𝑂 log 𝑛 rounds

 Span on BF model is 𝑂 log 𝑛 ⋅ 𝑂 log 𝑛 = 𝑂 log2 𝑛 , the same as a normal mergesort

 Asynchronous samplesort [BGS10, BAD20] with 𝑜(log2 𝑛) span is faster in practice

Some PRAM algorithms are already optimal, but not all

25

Problem Work
Span/

depth

List contraction 𝑂 𝑛 𝑂 log 𝑛 ∗

Comparison sort 𝑂 𝑛 log 𝑛 ↑ 𝑂 log 𝑛 ∗

Semisort 𝑂 𝑛 ↑ 𝑂 log 𝑛 ∗

Random permutation 𝑂 𝑛 ↑ 𝑂 log 𝑛 ∗

Range minimum query 𝑂 𝑛 𝑂 log 𝑛

Tree contraction 𝑂 𝑛 𝑂 log 𝑛 ∗

Ordered-set Operations

(Union, intersect, diff)
𝑂 𝑚 log

𝑛

𝑚
+ 1 𝑂 log 𝑛

Optimal parallel algorithms in the BF model

26

↑
 expected,

∗
 with high probability

 𝑂 log 𝑛 span ➔ none or a

constant number of global
synchronization

 New results for all these
fundamental problems

 Surprisingly, these algorithms
are all quite simple

 Prefix sum (scan)

[1, 2, 3, 4, 5] → [1, 3, 6, 10, 15]

 List ranking

List ranking

27

Synthesis of Parallel Algorithms

1 2 3 4 51 3 6 10 15

4 2 5 1 3

The splice operation for list ranking

28

1 2 3 4 5⊥ ⊤1

1

The splice operation for list ranking

29

1 2 3 4 5⊥ ⊤3

The splice operation for list ranking

30

1

2 3 4 5⊥ ⊤3

The splice operation for list ranking

31

1

3

3

7

5

⊥ ⊤

The splice operation for list ranking

32

1 3

3

10

5

⊥ ⊤

The splice operation for list ranking

33

1

3 5

⊥ ⊤

6
15

+ Reconstruction = List RankingList contraction

Use splice operation to contract the list and generate

a tree with shallow (ideally 𝑂 log 𝑛) depth

3
10

List contraction

34

Have been studied for decades [AM13, Baase93, CV86, JáJá92, JLS14,

KR90, Ranade98, RMM93, SGB+15, Vishkin84, Vishkin93, Wyllie79]

 The optimal ones (on PRAM) are complicated

 The practical ones are not theoretically efficient

 All existing algorithms requires Ω log 𝑛 rounds of global
synchronization

Goal: simple, both theoretically and practically efficient algorithm,
using no global synchronization

Motivation from [SGB+15]

35

Conceptually simple and practically efficient

⊤⊥

Motivation from [SGB+15]

36

Conceptually simple and practically efficient

7 1 5 2 64 30 ∞

Random priorities

∞

Lowest priority

Motivation from [SGB+15]

37

Conceptually simple and practically efficient

7 1 5 2 64 3

0

∞∞

Motivation from [SGB+15]

38

Conceptually simple and practically efficient

7

1

5

2

64

30

Round 1

∞∞

Motivation from [SGB+15]

39

Conceptually simple and practically efficient

7

1
5

2

6

4 30

Round 2

∞∞

Motivation from [SGB+15]

40

Conceptually simple and practically efficient

7

1
5

2

6
4

30

Round 3

∞∞

Motivation from [SGB+15]

41

Conceptually simple and practically efficient

7

1
5

2

64

3

0

Round 4

∞∞

Motivation from [SGB+15]

42

Conceptually simple and practically efficient

7

1
5

2

64

3

0

Give a random priority to each node

While not fully contracted

 Contract all feasible nodes in parallel

 Pack the rest of the nodes

∞∞

Dependency between splices

43

7

1

5

2

6
4

3
0

Tree height is Θ log 𝑛 whp [SGB+15],

the same as a randomized BST

(or treap, quicksort)

Give a random priority to each node

While not fully contracted

 Contract all feasible nodes in parallel

 Pack the rest of the nodes

Disadvantages:

• Ω log 𝑛 rounds of synchronization

• Need to pack in every round

Asynchrony in splicing

44

7 1 5 2 64 30 ∞∞

Asynchrony in splicing

45

7

1

5

2

64

30

Round 1

∞∞

Asynchrony in splicing

46

7 1 5 2 64 30 ∞∞

Asynchrony in splicing

47

7

1

5

2

64
0

∞∞ 3

Already doneIn progress Haven’t started

CAN START

Asynchrony in splicing

48

7

1
5

2

64
0

∞∞ 3

Already doneIn progress Haven’t started

New list contraction algorithm

49

7

1

5

2

6
4

3
0 × ×

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

New list contraction algorithm

50

7

1

5

2

6
4

3
0

New list contraction algorithm

51

7

1

5

2

6
4

3
0

0

0
0

1

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

0: waiting for two children

1: waiting for one child

2: waiting for no children

2
2

2
2

New list contraction algorithm

52

7

1

5

2

6
4

3
0

0
0

1
01

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

0: waiting for two children

1: waiting for one child

New list contraction algorithm

53

7

1

5

2

6
4

3
0

0
0

1
1

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

0: waiting for two children

1: waiting for one child

New list contraction algorithm

54

7

1

5

2

6
4

3
0

0
0

1
1

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

0: waiting for two children

1: waiting for one child

New list contraction algorithm

55

7

1

5

2

6
4

3
0

01
1

01

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

0: waiting for two children

1: waiting for one child

New list contraction algorithm

56

7

1

5

2

6
4

3
0

1
1

1
01

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

0: waiting for two children

1: waiting for one child

No packing

No global

synchronization

New list contraction algorithm

57

7

1

5

2

6
4

3
0

1
1

1

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

Work: 𝑂 𝑛

Span: 𝑂 log 𝑛 whp

Worst-case

0: waiting for two children

1: waiting for one child

1

Extremely simple to implement (<20 lines)

58

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with

 smaller priority

 if Test&Set(𝑣.flag) then break

More efficient than the highly optimized code in
PBBS from [SGB+15]

59

Input size

(million)

Running time (s)
Improved

byNew

algorithm

PBBS

version

10 0.039 0.082 110%

20 0.094 0.16 70%

50 0.23 0.38 65%

100 0.51 0.72 41%

200 1.11 1.53 38%

500 2.85 3.85 35%

Saved by avoiding

packing
(consistent for all cases)

g++ with Cilk

on 72 cores

Saved by avoiding

synchronization
(more when input is small)

Simple both conceptually and practically (rely on Test&Set)

Efficient both theoretically and practically

Highly asynchronous and not round based

Summary for the new list contraction algorithm

60

set the flag for each node

parallel-for each node 𝑣 do

 if 𝑣 is leaf then

 while list is not empty do

 splice 𝑣 out

 𝑣 ← 𝑣.prev or 𝑣.next with smaller priority

 if Test&Set(𝑣.flag) then break

7

1 5
2

64

3
0

 Challenge in parallelism: dependencies

 Classic solution: divide-and-conquer, round-based

Why so simple? Anything more general?

61

 Challenge in parallelism: dependencies

 Classic solution: divide-and-conquer, round-based

 What if we directly convert dependence structure to the computational DAG?

 The rest of the work is done by the work-stealing scheduler!

 Works for constant dependencies per node via Test&Set

 Simple algorithms: List contraction, tree contraction, random permutation, sequence
algorithms (e.g., RMQ), dynamic programs

 Idea combined with configuration space [Mulmuley 1994] solved open problems:
incremental Delaunay triangulation [JACM 2020], convex hull [SPAA 2020] (a
general framework for analyzing this type of algorithms)

Why so simple? Anything more general?

62

Good practical

performance

Simple

algorithms

Work

efficiency

Good

Parallelism

A new angle for (asynchronized) parallel algorithms

63

Theoretical

innovations
in the literature

Work

efficiency

Configuration

Space / RIC

Good

Parallelism

Good practical

performance

Simple

algorithms

Computational

DAG

Work-Stealing

Scheduler

Dependence

Structure

[SPAA community]
[BFS12,BGSS16,BGSS20,FN18,

HKSL14,PPO+15,SGB15, …]

Binary-forking model

(This paper)

[SPAA/SODA community]

Problem Work
Span/

depth

List contraction 𝑂 𝑛 𝑂 log 𝑛 ∗

Sorting 𝑂 𝑛 log 𝑛 ↑ 𝑂 log 𝑛 ∗

Semisort 𝑂 𝑛 ↑ 𝑂 log 𝑛 ∗

Random permutation 𝑂 𝑛 ↑ 𝑂 log 𝑛 ∗

Range minimum query 𝑂 𝑛 𝑂 log 𝑛

Tree contraction 𝑂 𝑛 𝑂 log 𝑛 ∗

Ordered-set operations

(Union, intersect, diff)
𝑂 𝑚 log

𝑛

𝑚
+ 1 𝑂 log 𝑛

Other optimal parallel algorithms in the BF model

64

↑
 expected,

∗
 with high probability

 Let ℬℱ1 be the class of algorithms requiring 𝑂 log 𝑛 depth/span and

polynomial work in the BF model

 Let ℬℱ 𝑊 𝑛 , 𝑆 𝑛 be the class of algorithms requiring 𝑆 𝑛 depth/span and

𝑊 𝑛 work

Complexity results

65

𝒩𝒞1 ⊆ ℒ ⊆ ℬℱ1 ⊆ 𝒜𝒞1 ⊆ 𝒫ℛ𝒜ℳ𝐶𝑅𝐶𝑊
1 ⊆ 𝒩𝒞2

ℬℱ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℬℱ ⊆ ℬℱ𝐶𝐴𝑆⫋Fork-join

[Manuscript from GJS]

All use no or constant rounds of global synchronization

Many are surprisingly simple

Our suggested model to design and analysis algorithms,

and related complexity results

Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided if possible

66

The binary-forking model and variants1

Optimal algorithms in the new model2

All use no or constant rounds of global synchronization

Many are surprisingly simple

Our suggested model to design and analysis algorithms,

and related complexity results

Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided if possible

67

The binary-forking model and variants1

Optimal algorithms in the new model2

Complexity, algorithms, implementation, software, etc.

Future work on exploring asynchrony in parallel algorithms

All use no or constant rounds of global synchronization

Many are surprisingly simple

Our suggested model to design and analysis algorithms,

and related complexity results

Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided is possible

68

The binary-forking model and variants1

Optimal algorithms on the new model2

Complexity, algorithms, implementation, software, etc.

Future work on exploring asynchrony in parallel algorithms

Full version of this talk (40 min):

https://www.cs.ucr.edu/~ygu/video/bf.mp4

(or just search “Yan Gu UCR”)

Motivations from system and architecture (1:00 – 3:20)

Benchmarking global synchronization cost (4:30 – 6:30)

More discussion for multithreaded models (11:30 – 18:00)

Complexity theory (18:00 – 19:00)

Related work in the BF model (19:00 – 21:20)

List contraction in more details (22:00 – 33:00)

How does this idea generalize to other problems (33:00 – 36:00)

Comparison sort and ordered-set operations (36:40 – 38:00)

Various anecdotes (random places)

https://www.cs.ucr.edu/~ygu/video/bf.mp4
https://www.cs.ucr.edu/~ygu/video/bf.mp4
https://www.cs.ucr.edu/~ygu/video/bf.mp4

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10: The multithreaded models [BL99, ABP01]
	幻灯片 11: The multithreaded model in CLRS
	幻灯片 12: The multithreaded model in CLRS
	幻灯片 13: Why multithreaded models?
	幻灯片 14: Why revisit multithreaded models?
	幻灯片 15: Rest of this talk
	幻灯片 16: The binary-forking (BF) model
	幻灯片 17: Q1: why binary when forking?
	幻灯片 18: Q1: why binary when forking?
	幻灯片 19: Q2: is nested join necessary?
	幻灯片 20: Q2: is nested join necessary?
	幻灯片 21: Q3: Why assume Test&Set?
	幻灯片 22: The binary-forking (BF) model
	幻灯片 23: The two derived models
	幻灯片 24: Outline of this talk
	幻灯片 25: Some PRAM algorithms are already optimal, but not all
	幻灯片 26: Optimal parallel algorithms in the BF model
	幻灯片 27: List ranking
	幻灯片 28: The splice operation for list ranking
	幻灯片 29: The splice operation for list ranking
	幻灯片 30: The splice operation for list ranking
	幻灯片 31: The splice operation for list ranking
	幻灯片 32: The splice operation for list ranking
	幻灯片 33: The splice operation for list ranking
	幻灯片 34: List contraction
	幻灯片 35: Motivation from [SGB+15]
	幻灯片 36: Motivation from [SGB+15]
	幻灯片 37: Motivation from [SGB+15]
	幻灯片 38: Motivation from [SGB+15]
	幻灯片 39: Motivation from [SGB+15]
	幻灯片 40: Motivation from [SGB+15]
	幻灯片 41: Motivation from [SGB+15]
	幻灯片 42: Motivation from [SGB+15]
	幻灯片 43: Dependency between splices
	幻灯片 44: Asynchrony in splicing
	幻灯片 45: Asynchrony in splicing
	幻灯片 46: Asynchrony in splicing
	幻灯片 47: Asynchrony in splicing
	幻灯片 48: Asynchrony in splicing
	幻灯片 49: New list contraction algorithm
	幻灯片 50: New list contraction algorithm
	幻灯片 51: New list contraction algorithm
	幻灯片 52: New list contraction algorithm
	幻灯片 53: New list contraction algorithm
	幻灯片 54: New list contraction algorithm
	幻灯片 55: New list contraction algorithm
	幻灯片 56: New list contraction algorithm
	幻灯片 57: New list contraction algorithm
	幻灯片 58: Extremely simple to implement (<20 lines)
	幻灯片 59: More efficient than the highly optimized code in PBBS from [SGB+15]
	幻灯片 60: Summary for the new list contraction algorithm
	幻灯片 61: Why so simple? Anything more general?
	幻灯片 62: Why so simple? Anything more general?
	幻灯片 63: A new angle for (asynchronized) parallel algorithms
	幻灯片 64: Other optimal parallel algorithms in the BF model
	幻灯片 65: Complexity results
	幻灯片 66: Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided if possible
	幻灯片 67: Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided if possible
	幻灯片 68: Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided is possible

