# **Optimal Parallel Algorithms in the Binary-Forking Model**

#### A joint work with

Yan Gu, UC Riverside SPAA 2020 (virtual)







Full version of this talk (40 min): https://www.cs.ucr.edu/~ygu/video/bf.mp4 (or just search "Yan Gu UCR")

# > The binary-forking model

1

Don't we have lots of computational models already? Why more?

# **2 Optimal algorithms in the new model**

Sorting/semisorting, list/tree contraction, set operations (union, intersect, difference), random permutation, RMQ, etc. Are they useful and inspiring?

#### Development of parallel <mark>hardware</mark> (from 2005)

#### **2020** Intel<sup>®</sup> Xeon<sup>®</sup> Platinum 8260

(intel)

**XEON** 

PLATINUM

inside™



2005

72 cores (288 threads) For computation intensive applications



Intel<sup>®</sup> Core<sup>™</sup>2 Duo (E6320) / AMD Athlon 64 X2



#### Parallel sorting

[GBSS'15, OKFS'19, AWFS'17, CBB+'15, ABPS'15, BGS'10, BGHS'12, RPC+'11, SBF+'12, MSL+'15 .....]

#### In-memory databases

AerospikeDBS, Ancelus, Apache Ignite, ArangoDB, Hyper, Kinetica, MemSQL, SQLite, IMDB, SQL Server, Monet DB, SAP HANA, VoltDB, ...

#### Parallel data structure

[BFGS'12, BFS'16, SB'14, LSB'16, AF16, SB'19, YRP'07, BFF+'07, DBS'19, EKS'14, ...]

Shared-memory parallel software and implementations

> > (intel

**XEON PI** 

AMD 64

Theory of parallel computing

(starting from ~1970s)

# Programming languages and toolboxes

OpemMP, Cilk, Java fork-join, X10, Intel TBB, PBBS, MCSTL, .....

#### Parallel graph processing

Ligra, Ligra+, GraphIt, Julienne, Aspen, GBBS, Galois, STINGER, PRISM, X-Stream, Ringo, TurboGraph, FlashGraph, Kaskade, Sage, ...

Development of parallel hardware (from 2005)

#### Parallel sorting

[GBSS'15, OKFS'19, AWFS'17, CBB+'15, ABPS'15, BGS'10, BGHS'12, RPC+'11, SBF+'12, MSL+'15 ......]

#### In-memory databases

AerospikeDBS, Ancelus, Apache Ignite, ArangoDB, Hyper, Kinetica, MemSQL, SQLite, IMDB, SQL Server, Monet DB, SAP HANA, VoltDB, ...

Shared memory

#### Parallel data structure

[BFGS'12, BFS'16, SB'14, LSB'16, AF16, SB'19, YRP'07, BFF+'07, DBS'19, EKS'14, ...]

Shared-memory parallel <mark>software</mark> and implementations

> > (intel

XEON PH

**PRAM model** 

and

**PRAM algorithms** 

AMD C

# Programming languages and toolboxes

OpemMP, Cilk, Java fork-join, X10, Intel TBB, PBBS, MCSTL, .....

#### Parallel graph processing

Ligra, Ligra+, GraphIt, Julienne, Aspen, GBBS, Galois, STINGER, PRISM, X-Stream, Ringo, TurboGraph, FlashGraph, Kaskade, Sage, ...

Development of parallel hardware (from 2005)



heory of parallel computing (starting from ~1970s)

# Is PRAM still the best model for designing and analyzing algorithms today?



PRAM

(~1980)

Processors run in **lockstep** on a PRAM (ARBITRARY-CRCW, PRIORITY-CRCW, CREW, EREW, CRQW, etc.)

Processors are highly synchronized



#### However, modern architecture is highly asynchronous



As you can see, threads are highly asynchronous.

Real architecture: processor rates vary significantly due to

- cache effects
- processor pipelines
  - ILP
- vectorization
- branch prediction
- hyper-threading
- overclocking
- hterrupts

. . . . . .

# **Global synchronization can be extremely costly**



As you can see, threads are highly asynchronous.

Real architecture: processor rates vary significantly due to

- cache effects
- processor pipelines
  - ILP
- vectorization
- branch prediction
- hyper-threading
- overclocking
- interrupts

. . . . . .

# **Global synchronization can be extremely costly**

About  $\log n$ ,

0.7-1.7x

ovorhood

About  $\log^2 n$ ,

5-13x

ovorhoad

• 10<sup>9</sup> arithmetic operations in total

• Adding periodical global synchronization

BSP model: give synchronization a higher weight MPC model: only minimize synchronization rounds Asynchronized PRAM: synchronize only when needed

#### The multithreaded models [BL99, ABP01]

#### • A class of models

- The computational models for many recent parallel algorithms (a short list: [ABB02, AFL+14, BFGS11, BG04, BGS10, BR98, BGSS20, BST12, BL99, CGTT17, CRSB13, CR17, DST16, TYK+15])
  - Yesterday's tutorial #1 (OpenCilk): programming language and interface, runtime supports [BL99, HLL10, SKL+15, SML19]
  - Yesterday's tutorial #2 (parallel trees): efficient tree algorithms both theoretically and practically [BFS16, SB19, SBLP19, SFB18]
- The parallel model in [CLRS, 3<sup>rd</sup> edition]

#### The multithreaded model in CLRS

• Similar to a RAM, working on a shared-memory

• A fork instruction creates **two** subtasks that can be run in parallel

• After they finish, they join and continue

• Assumes race-free

 Or allows some atomic operations such as Test&Set, Compare&Swap, and Fetch&Add



#### The multithreaded model in CLRS

• Similar to a RAM, working on a shared-memory

- A fork instruction creates two subtasks that can be run in parallel
- After they finish, they join and continue
- Assumes race-free
- An algorithm is measured by work (#operations) W and span/depth (longest dependence) D





#### Why multithreaded models?

- Supported by existing libraries such as Cilk, OpenMP, TBB, Java Fork-Join, X10, TPL, Habanero
- Have good theoretical guarantee when mapping to hardware
  - Incur O(PD) "steals" whp using a randomized work-stealing scheduler (under mild assumptions)

#processors

Span/depth

The computation is highly **asynchronous** 



#### Why revisit multithreaded models?

- Decision 1: binary forking vs. n-ary forking
- Decision 2: nested join vs. non-nested join
- Decision 3: race-free vs. assuming Test&Set vs. assuming Compare&Swap vs. assuming Fetch&Add

#### **Rest of this talk**



#### The binary-forking (BF) model

- Fork generates two subtasks
- o Assumes Test&Set
  - Atomically set a bit flag from 0 to 1
  - Weakest consensus primitive (consensus number: 2)

• Test&Set can be used to implement Join



#### Q1: why binary when forking?

 In practice, that's how most existing software is implemented

• Arbitrary forking = global synchronization





## Q1: why binary when forking?

- In practice, that's how most existing software is implemented
- Arbitrary forking can abuse global synchronization (no difference as compared to the PRAM model)
- For dynamic work-stealing schedulers, most efficient scheduling results (e.g., [BL99, ABP01, ABB02]) hold only for binary forking
  - O(PD) "steals" whp  $\left(O\left(\frac{W}{P}+D\right)$  time)
  - Otherwise, the span bound can increase by O(log n)



#### Q2: is nested join necessary?

• Easy to implement

- Cilk: cilk\_spawn A(); B(); cilk\_sync;
- Lambda: par\_do([&](){A();}, [&](){B();});



#### Q2: is nested join necessary?

• Easy to implement

- Cilk: cilk\_spawn A(); B(); cilk\_sync;
- Lambda: par\_do([&](){A();}, [&](){B();});

Scheduling results for work-stealing (e.g., [ABP01, ABB02]) do not require nested join

• In BF model, Test&Set allows non-nested join



#### Q3: Why assume Test&Set?

o What is Test&Set?

- Atomically set a bit flag from 0 to 1
- Weakest consensus primitive (consensus number: 2)
- o Join needs at least Test&Set
  - Two threads need to reach consensus
  - No stronger assumptions for real hardware

• Real architecture supports Test&Set



## The binary-forking (BF) model

- Fork is binary
- o Assumes Test&Set
  - Atomically set a bit flag from 0 to 1
  - Simplest consensus primitive (consensus number: 2)
- Test&Set can be used to implement Join (non-nested join)
- Theoretical scheduling guarantees still hold
  - Incur O(PD) "steals" whp using a randomized workstealing scheduler



#### The two derived models

• The binary fork-join model [CLRS, 3rd edition]

- Assumes Join as a primitive, instead of Test&Set
- Additional guarantees for race-free and determinism

#### • The binary-forking model with CAS

- Assumes Compare&Swap, a stronger consensus primitive (consensus number: ∞)
- Easier for practical programming

#### **Outline of this talk**



#### Some PRAM algorithms are already optimal, but not all

• Lower bound:  $\Omega(\log n)$  span for algorithm with  $\Omega(n)$  work

• A parallel-for of size n has  $O(\log n)$  span in the BF model

• Reduce, scan, filter are already optimal

• Cole's ingenious PRAM mergesort requires  $O(\log n)$  rounds

- Span on BF model is  $O(\log n) \cdot O(\log n) = O(\log^2 n)$ , the same as a normal mergesort
- Asynchronous samplesort [BGS10, BAD20] with  $o(\log^2 n)$  span is faster in practice

#### **Optimal parallel algorithms in the BF model**

- O(log n) span → none or a constant number of global synchronization
- New results for all these fundamental problems
- Surprisingly, these algorithms are all quite simple

| Problem                                            | Work                                            | Span/<br>depth |
|----------------------------------------------------|-------------------------------------------------|----------------|
| List contraction                                   | O(n)                                            | $O(\log n)^*$  |
| Comparison sort                                    | $O(n\log n)^{\uparrow}$                         | $O(\log n)^*$  |
| Semisort                                           | $O(n)^{\uparrow}$                               | $O(\log n)^*$  |
| Random permutation                                 | $O(n)^{\uparrow}$                               | $O(\log n)^*$  |
| Range minimum query                                | O(n)                                            | $O(\log n)$    |
| Tree contraction                                   | O(n)                                            | $O(\log n)^*$  |
| Ordered-set Operations<br>(Union, intersect, diff) | $O\left(m\log\left(\frac{n}{m}+1\right)\right)$ | $O(\log n)$    |
| <u>↑</u>                                           | *                                               |                |

expected, \* with high probability

#### **List ranking**

• Prefix sum (scan)

 $[1, 2, 3, 4, 5] \rightarrow [1, 3, 6,$ 

• List ranking







#### Synthesis of Parallel Algorithms

#### Contents

|      | Introduction<br>John H. Reif                                                                                                   | 1   |
|------|--------------------------------------------------------------------------------------------------------------------------------|-----|
| PAR  | T I FUNDAMENTAL PARALLEL GRAPH ALGORITHMS                                                                                      | 33  |
|      | Prefix Sums and Their Applications<br>Guy E. Blelloch                                                                          | 35  |
| 2    | Introduction to Parallel Connectivity, <u>List Ranking</u> , and<br>Euler Tour Techniques<br><i>Sara Baase</i>                 | 61  |
| 3    | List Ranking and Parallel Tree Contraction<br>Margaret Reid-Miller, Gary L. Miller, and Francesmary Modugno                    | 115 |
| PAR  | T II ADVANCED PARALLEL GRAPH ALGORITHMS                                                                                        | 195 |
| 4    | Randomized Parallel Connectivity<br>Hillel Gazit                                                                               | 197 |
| 5    | Advanced Parallel Prefix-sums, List Ranking and Connectivity <i>Uzi Vishkin</i>                                                | 215 |
| 6    | Parallel Lowest Common Ancestor Computation<br>Baruch Schieber                                                                 | 259 |
| 7    | Parallel Open Ear Decomposition with Applications to<br>Graph Biconnectivity and Triconnectivity<br><i>Vijaya Ramachandran</i> | 275 |
| 8    | Parallel Algorithms for Chordal Graphs<br><i>Philip Klein</i>                                                                  | 341 |
| PART | FIII PARALLEL SORTING AND COMPUTATIONAL GEOMETRY                                                                               | 409 |
| 9    | Random Sampling Techniques and Parallel Algorithm Design<br>Sandeep Sen and Sanguthevar Rajasekaran                            | 411 |
| 10   | Parallel Merge Sort<br><i>Richard Cole</i>                                                                                     | 453 |

v













# List contraction + Reconstruction = List Ranking Use splice operation to contract the list and generate a tree with shallow (ideally $O(\log n)$ ) depth

#### **List contraction**

- Have been studied for decades [AM13, Baase93, CV86, JáJá92, JLS14, KR90, Ranade98, RMM93, SGB+15, Vishkin84, Vishkin93, Wyllie79]
  - The optimal ones (on PRAM) are complicated
  - The practical ones are not theoretically efficient
  - All existing algorithms requires Ω(log n) rounds of global synchronization

 Goal: simple, both theoretically and practically efficient algorithm, using no global synchronization

Conceptually simple and practically efficient



**Random priorities** 

Conceptually simple and practically efficient

$$\square \mapsto 0 \mapsto 4 \mapsto 7 \mapsto 1 \mapsto 5 \mapsto 2 \mapsto 6 \mapsto 3 \mapsto \infty$$

**Lowest priority** 

Conceptually simple and practically efficient



Give a random priority to each node

While not fully contracted

**Contract** all feasible nodes in parallel

Pack the rest of the nodes

#### **Dependency between splices**

Tree height is  $\Theta(\log n)$  whp [SGB+15], the same as a randomized BST (or treap, quicksort)



Give a random priority to each node

While not fully contracted

**Contract** all feasible nodes in parallel

Pack the rest of the nodes

**Disadvantages:** 

- $\Omega(\log n)$  rounds of synchronization
- Need to pack in every round

















**0:** waiting for two children

1: waiting for one child

**2:** waiting for no children

**0:** waiting for two children

1: waiting for one child



**0:** waiting for two children

1: waiting for one child



**0:** waiting for two children

1: waiting for one child



**0:** waiting for two children

1: waiting for one child



**0:** waiting for two children

1: waiting for one child



set the flag for each node **parallel-for** each node v **do if** v is leaf then **while** list is not empty **do** splice v out  $v \leftarrow v$ .prev or v.next with smaller priority if Test&Set(v.flag) then break

No packing

No global synchronization

**0:** waiting for two children

1: waiting for one child



set the flag for each node parallel-for each node v do if v is leaf then while list is not empty do splice v out  $v \leftarrow v$ .prev or v.next with smaller priority if Test&Set(v.flag) then break Worst-case Work: O(n)Span:  $O(\log n)$  whp

#### **Extremely simple to implement (<20 lines)**

```
set the flag for each node

parallel-for each node v do

if v is leaf then

while list is not empty do

splice v out

v \leftarrow v.prev or v.next with

smaller priority

if Test&Set(v.flag) then break
```

```
pvoid listRanking(node *A, intT n) {

       char* R = new char[n];
 2
 3
      parallel for (intT i=0; i < n; i++)</pre>
         R[i] = (A[i].pri < A[A[i].prev].pri) || (A[i].pri < A[A[i].next].pri);</pre>
 4
 5
      parallel for (intT i=0; i < n; i++) if (R[i] <= 1) {</pre>
 6
        intT c = i, prev = A[c].prev, next = A[i].next;
        if ((A[i].pri < A[prev].pri) && (A[i].pri < A[next].pri)) {</pre>
 7
 8
             while (A[c].prev != n || A[c].next != n) {
 9
                 A[next].prev = prev;
10
                 A[prev].next = next;
11
                 R[c] = 2;
12
                 c = A[prev].pri < A[next].pri ? prev : next;</pre>
                 if (utils::CAS(&R[c], (char)0, (char)1)) break;
13
                 prev = A[c].prev; next = A[c].next;
14
15
16
17
18
       delete[] R;
19
```

# More efficient than the highly optimized code in PBBS from [SGB+15]

|            |                  |                 |          | ·(I <b>^</b> )II             |  |
|------------|------------------|-----------------|----------|------------------------------|--|
| Input size | Running time (s) |                 | Improved | g++ with Cilk<br>on 72 cores |  |
| (million)  | New<br>algorithm | PBBS<br>version | by       |                              |  |
| 10         | 0.039            | 0.082           | 110%     | Saved by avoiding            |  |
| 20         | 0.094            | 0.16            | 70%      | (more when input is small)   |  |
| 50         | 0.23             | 0.38            | 65%      |                              |  |
| 100        | 0.51             | 0.72            | 41%      | Saved by avoiding            |  |
| 200        | 1.11             | 1.53            | 38%      | packing                      |  |
| 500        | 2.85             | 3.85            | 35%      | (consistent for all cases)   |  |
|            |                  |                 |          |                              |  |

#### Summary for the new list contraction algorithm

set the flag for each node **parallel-for** each node v **do if** v is leaf then while list is not empty **do** splice v out  $v \leftarrow v$ .prev or v.next with smaller priority if Test&Set(v.flag) then break

Simple both conceptually and practically (rely on Test&Set)

• Efficient both theoretically and practically

• Highly asynchronous and not round based

#### Why so simple? Anything more general?

• Challenge in parallelism: dependencies

• Classic solution: divide-and-conquer, round-based



#### Why so simple? Anything more general?

• Challenge in parallelism: dependencies

• Classic solution: divide-and-conquer, round-based



- What if we directly convert dependence structure to the computational DAG?
  - The rest of the work is done by the work-stealing scheduler!
  - Works for constant dependencies per node via Test&Set
  - Simple algorithms: List contraction, tree contraction, random permutation, sequence algorithms (e.g., RMQ), dynamic programs
- Idea combined with configuration space [Mulmuley 1994] solved open problems: incremental Delaunay triangulation [JACM 2020], convex hull [SPAA 2020] (a general framework for analyzing this type of algorithms)

#### A new angle for (asynchronized) parallel algorithms



#### **Other optimal parallel algorithms in the BF model**

| Problem                                            | Work                                            | Span/<br>depth |
|----------------------------------------------------|-------------------------------------------------|----------------|
| List contraction                                   | O(n)                                            | $O(\log n)^*$  |
| Sorting                                            | $O(n\log n)^{\uparrow}$                         | $O(\log n)^*$  |
| Semisort                                           | $O(n)^{\uparrow}$                               | $O(\log n)^*$  |
| Random permutation                                 | $O(n)^{\uparrow}$                               | $O(\log n)^*$  |
| Range minimum query                                | O(n)                                            | $O(\log n)$    |
| Tree contraction                                   | O(n)                                            | $O(\log n)^*$  |
| Ordered-set operations<br>(Union, intersect, diff) | $O\left(m\log\left(\frac{n}{m}+1\right)\right)$ | $O(\log n)$    |
| <br>↑                                              | * • • • • • • •                                 |                |

expected, \* with high probability

#### **Complexity results**

• Let  $\mathcal{BF}^1$  be the class of algorithms requiring  $O(\log n)$  depth/span and polynomial work in the BF model

$$\mathcal{NC}^1 \subseteq \mathcal{L} \subseteq \mathcal{BF}^1 \subseteq \mathcal{AC}^1 \subseteq \mathcal{PRAM}^1_{CRCW} \subseteq \mathcal{NC}^2$$

• Let  $\mathcal{BF}(W(n), S(n))$  be the class of algorithms requiring S(n) depth/span and W(n) work

$$\mathcal{BF}_{\text{Fork-join}} \subsetneqq \mathcal{BF} \subseteq \mathcal{BF}_{CAS}$$
[Manuscript from GJS]

Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided if possible

# > The binary-forking model and variants

Our suggested model to design and analysis algorithms, and related complexity results

# **2 Optimal algorithms in the new model**

All use no or constant rounds of global synchronization Many are surprisingly simple Modern parallel machines are highly asynchronous, and global synchronization is costly and should be avoided if possible

# > The binary-forking model and variants

Our suggested model to design and analysis algorithms, and related complexity results

# **2 >** Optimal algorithms in the new model

All use no or constant rounds of global synchronization Many are surprisingly simple

#### Future work on exploring asynchrony in parallel algorithms

Complexity, algorithms, implementation, software, etc.

Modern parallel machines are highly asynchronous, and global ynchronizatior Full version of this talk (40 min); ible https://www.cs.ucr.edu/~ygu/video/bf.mp4 (or just search "Yan Gu UCR") Our suggested model to design and analysis algorithms, Motivations from system and architecture (1:00 – 3:20) Benchmarking global synchronization cost (4:30 – 6:30) More discussion for multithreaded models (11:30 – 18:00) Complexity theory (18:00 - 19:00)Related work in the BF model (19:00 – 21:20) List contraction in more details (22:00 – 33:00) How does this idea generalize to other problems (33:00 – 36:00) Comparison sort and ordered-set operations (36:40 – 38:00) ComplexiVarious anecdotes (random places) etc.