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The binary-forking model

Don’t we have lots of computational models already?
Why more?

Optimal algorithms in the new model

Sorting/semisorting, list/tree contraction, set operations
(union, intersect, difference), random permutation, RMQ, etc.

Are they useful and inspiring?
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Is PRAM still the best model for designing and
analyzing algorithms today?

Processors run in lockstep on a PRAM
(ARBITRARY-CRCW, PRIORITY-CRCW,
CREW, EREW, CRQW, etc.)

Processors are highly synchronized

PRAM
(~1980)




However, modern architecture is highly asynchronous

As you can see, threads are highly asynchronous.

Real architecture: processor
rates vary significantly due to

cache effects
processor pipelines
ILP

vectorization
branch prediction
hyper-threading
overclocking
iInterrupts



Global synchronization can be extremely costly

As you can see, threads are highly asynchronous.

Real architecture: processor
rates vary significantly due to
e cache effects

processor pipelines

« |LP

* vectorization

« branch prediction

* hyper-threading

« overclocking

* interrupts



Global synchronization can be extremely costly

10° arithmetic operations in total
Adding periodical global synchronization

About logn, About log? n,
0.7-1.7x 5-13x

A\IQPI‘\QG!‘I I\\IQFhQGf’I

BSP model: give synchronization a higher weight
MPC model: only minimize synchronization rounds

Asynchronized PRAM: synchronize only when needed




The multithreaded models [BL99, ABPO1]

A class of models

The computational models for many recent parallel algorithms (a short list:

)

Yesterday'’s tutorial #1 (OpenCilk): programming language and interface,
runtime supports

Yesterday'’s tutorial #2 (parallel trees): efficient tree algorithms both
theoretically and practically

The parallel model in

10



The multithreaded model in CLRS

Similar to a RAM, working on a shared-memory

A fork instruction creates two subtasks that can
be run in parallel

After they finish, they join and continue

Assumes race-free

Or allows some atomic operations such as Test&Set,
Compare&Swap, and Fetch&Add

11



The multithreaded model in CLRS

Similar to a RAM, working on a shared-memory

A fork instruction creates two subtasks that can
be run in parallel

After they finish, they join and continue
Assumes race-free

An algorithm is measured by work (#operations) W
and span/depth (longest dependence) D

Binary Fork-Join Model

12



Why multithreaded models?

Supported by existing libraries such as Cilk,
OpenMP, TBB, Java Fork-Join, X10, TPL,
Habanero

Have good theoretical guarantee when mapping
to hardware

Incur O(PD) “steals” whp using a randomized
Work/-'atgaliﬁ scheduler (under mild assumptions)

#processors Span/depth

The computation is highly
asynchronous

13



Why revisit multithreaded models?

» Decision 1: binary forking vs. n-ary forking
» Decision 2: nested join vs. non-nested join

» Decision 3: race-free vs. assuming Test&Set vs.
assuming Compare&Swap vs. assuming Fetch&Add

14



Rest of this talk

2

The binary-forking model

Algorithm design inspired In
the asynchronous setting

15



The binary-forking (BF) model

Fork generates two subtasks

Assumes Test&Set

Atomically set a bit flag from 0 to 1
Weakest consensus primitive (consensus number: 2)

Test&Set can be used to implement Join '
m done!

Q

0 ( ofithe

predecessors is
ready)

I’m done!

L

Got it! You are the
latter one. Please take
over and continue!

16



Q1: why binary when forking?

In practice, that's how most existing software is
implemented

Arbitrary forking = global synchronization

o
<
o
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Q1: why binary when forking?

In practice, that's how most existing software is
implemented

Arbitrary forking can abuse global synchronization
(no difference as compared to the PRAM model)

For dynamic work-stealing schedulers, most
efficient scheduling results (e.g., [BL99, ABPO1,
ABBO02]) hold only for binary forking

O(PD) “steals” whp (0 (% + D) time)

Otherwise, the span bound can increase by
O (logn)

18



Q2: is nested join necessary?

o Easy to implement
o Cilk: cilk_spawn A(); B(); cilk_sync;
» Lambda: par_do([&] (){A();}, [&]I(){B();});

19



Q2: is nested join necessary?

Easy to implement
Cilk: cilk_spawn A(); B(); cilk_sync;
Lambda: par_do([&](){A();}, [&I(){B();1});

Scheduling results for work-stealing (e.g., [ABPO1,

ABBO02]) do not require nested join

In BF model, Test&Set allows non-nested join

I’'m done!
) O
®

20



Q3: Why assume Test&Set?

What is Test&Set?

Atomically set a bit flag from 0 to 1
Weakest consensus primitive (consensus number: 2)

Join needs at least Test&Set
Two threads need to reach consensus
No stronger assumptions for real hardware

Real architecture supports Test&Set

21



The binary-forking (BF) model

Fork is binary

Assumes Test&Set

Atomically set a bit flag from 0 to 1
Simplest consensus primitive (consensus number: 2)

Test&Set can be used to implement Join
(non-nested join)

Theoretical scheduling guarantees still hold

Incur O(PD) “steals” whp using a randomized work-
stealing scheduler

22



The two derived models

The binary fork-join model [cLRrs, 3 edition]
Assumes Join as a primitive, instead of Test&Set

Additional guarantees for race-free and determinism

The binary-forking model with CAS

Assumes Compare&Swap, a stronger consensus primitive
(consensus number: )

Easier for practical programming

23



Outline of this talk

2

The binary-forking model

Algorithm design inspired In
the asynchronous setting

24



Some PRAM algorithms are already optimal, but not all

Lower bound: Q(logn) span for algorithm with Q(n) work
A parallel-for of size n has 0(logn) span in the BF model
Reduce, scan, filter are already optimal

Cole’s ingenious PRAM mergesort requires 0 (logn) rounds
Span on BF model is 0(logn) - 0(logn) = 0(log? n), the same as a normal mergesort

Asynchronous samplesort [BGS10, BAD20] with o(log? n) span is faster in practice

25



Optimal parallel algorithms in the BF model

O(logn) span =» none or a
constant number of global
synchronization

New results for all these
fundamental problems

Surprisingly, these algorithms
are all quite simple

Problem Work
Comparison sort O(nlogn)’
Semisort o(n)’
Random permutation o(n)’
Range minimum query 0(n)
Tree contraction 0(n)

Ordered-set Operations ( (2 ))
(Union, intersect, diff) 0(mlog m+1

"expected, " with high probability

26



Synthesis of Parallel Algorithms
List ranking
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The splice operation for list ranking
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The splice operation for list ranking
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The splice operation for list ranking
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The splice operation for list ranking

1 -1 3 "/
1 3 9)

31



The splice operation for list ranking

1 3 5
3
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The splice operation for list ranking

1 3 110
3 S

List contraction + Reconstruction = List Ranking

l

Use splice operation to contract the list and generate
a tree with shallow (ideally O(logn)) depth

33



List contraction

Have been studied for decades [AM13, Baase93, CV86, JaJag92, JLS14,
KR90, Ranade98, RMM93, SGB+15, Vishkin84, Vishkin93, Wyllie79]

The optimal ones (on PRAM) are complicated
The practical ones are not theoretically efficient

All existing algorithms requires Q(logn) rounds of global
synchronization

Goal: simple, both theoretically and practically efficient algorithm,
using no global synchronization

34



Motivation from [SGB*15]

Conceptually simple and practically efficient

- [ - [ i » P =
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Motivation from [SGB*15] Random priorities

o Conceptually simple and practically efficient 4
o047+ 15— 210 — 3 — 0

)

Lowest priority




Motivation from [SGB*15]

Conceptually simple and practically efficient

o0 M4l 71l 52
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Motivation from [SGB*15]

Conceptually sim

dle and practically efficient

[ <
» <

e
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| 7
1

19
2

Round 1

38



Motivation from [SGB*15]

Conceptually simple and practically efficient

5

{7
1 0 N

Round 2
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Motivation from [SGB*15]

Conceptually simple and practically efficient

5

{7
1 0 N

Round 3
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Motivation from [SGB*15]

Conceptually simple and practically efficient

ﬂ%
<4
\4
0 5

Round 4
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Motivation from [SGB*15]

Conceptually simple and practically efficient

ﬂ%
<4
\4
0 5

Give a random priority to each node
While not fully contracted
Contract all feasible nodes in parallel

Pack the rest of the nodes

42



Tree height is ©(logn) whp [sGB*15],
the same as a randomized BST
(or treap, quicksort)

e ;
o/ 1/5 2 \3

Dependency between splices

Give a random priority to each node
While not fully contracted Disadvantages:
Contract all feasible nodes in parallel * Q(logn) rounds of synchronization

Pack the rest of the nodes * Need to pack in every round

43



Asynchrony in splicing
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Asynchrony in splicing

o0 4 l—7 " 5
0 1 2

Round 1
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Asynchrony in splicing
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Asynchrony in splicing

BSn

CAN START

/

In progress

"/ (S
1 2

N

Already done

Haven't started
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Asynchrony in splicing

BSn

/

In progress

o/
B RO

N

Already done

Haven't started
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New list contraction algorithm
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New list contraction algorithm

s
o/ 1/5

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break




I; i | i 0: waiting for two children
New list contraction algorithm 1: waiting for one child

0 2: waiting for no children
1/ 7 0

A 0 2
§ / 2 V4 SR 2 \ 3

N

set the flag for each node -
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break
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0: waiting for two children
1: waiting for one child

\z

New list contraction algorithm
0

I4
2

v

set the flag for each node
parallel-for each node v do
if v is leaf then D —
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break
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0: waiting for two children
1: waiting for one child

T T — s
il e

e

New list contraction algorithm

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
If Test&Set(v.flag) then break <
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New list contraction algorithm

0: waiting for two children

1: waiting for one child

7 0
4 w
)

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

\z
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New list contraction algorithm

0: waiting for two children

1: waiting for one child

7 0
4 w
)

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out
v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

\z
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0: waiting for two children

New list contraction algorithm 1: waiting for one child

14

set the flag for each node

parallel-for each node v do No paCkmg
if v is leaf then
while list is not empty do
splice v out No QIObaI
v « v.prev or v.next with smaller priority synch ronization

if Test&Set(v.flag) then break

56



0: waiting for two children

New list contraction algorithm 1: waiting for one child

1
/ 1
oS 6
S
set the flag for each node ‘onrSt'Case
parallel-for each node v do _
if v is leaf then Work: 0(n)
while list is not empty do _
splice v out — Span: O(logn) whp

v <« v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

57



Extremely simple to implement (<20 lines)

1 Hvoid listRanking(node *A&, intT n) {
2 char* R = new char[n];
3 parallel for (intT i=0; i1 < n; 1i++)
set the flag for each node 4 R[i] = (A[i].pri < A[A[i].prev].pri) || (A[i].pri < A[A[i].next].pri);
para"el_for eaCh nOde v do 5 B parallel for (intT i=0; i < n; i++) if (R[i] <= 1) {
. 6 intT ¢ = i, prev = Alc].prev, next = A[i].next;
if v is leaf then 7 E if ((A[i].pri < Alprev].pri) && (A[i].pri < A[next]l.pri)) {
. . . 8 H while (A[c].prev != n || A[lc].next '= n) {
while list is not empty do Alnext] prov = prev;
Sp“Ce v Out 10 A[prev] .next = next;
. 11 Rl[c] = 2;
VU & U.prev or v'neXt Wlth 12 c = Alprev] ..pri < A[next].pri ? prev : next;
smaller priority 13 if (utils::CAS(&R[c], (char)0, (char)l)) break;
if Test&Set(v.flag) then break . | [ Prey T plelprevy mest = atel nexty
le + }
17 + }
18 delete[] R;
19 }
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More efficient than the highly optimized code in
PBBS from [SGB*15]

- g++ with Cilk
Input size Running time (s) Improved  ©On 72 cores
(million) New PBBS by
algorithm version o
10 0.039 0.082 110% Saved by avoiding
synchronization
20 0.094 0.16 70% \ (more when input is small)
50 0.23 0.38 65%
100 0.91 0.72 41 ZA) Saved by avoiding
200 1.11 153  38% packing

500 2.85 3.85 35% < (consistent for all cases)
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Summary for the new list contraction algorithm

set the flag for each node
parallel-for each node v do
if v is leaf then
while list is not empty do
splice v out

v « v.prev or v.next with smaller priority
if Test&Set(v.flag) then break

6
3

Simple both conceptually and practically (rely on Test&Set)

Efficient both theoretical

y and practically

Highly asynchronous anc

not round based
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Why so simple? Anything more general?

o Challenge in parallelism: dependencies
« Classic solution: divide-and-conquer, round-based /

e
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Why so simple? Anything more general?

Challenge in parallelism: dependencies /
Classic solution: divide-and-conquer, round-based / /

What if we directly convert dependence structure to the computational DAG?

The rest of the work is done by the work-stealing scheduler!
Works for constant dependencies per node via Test&Set

Simple algorithms: List contraction, tree contraction, random permutation, sequence
algorithms (e.g., RMQ), dynamic programs

Idea combined with configuration space [Mulmuley 1994] solved open problems:
incremental Delaunay triangulation [JacM 20201, convex hull [sPAA 20207 (a
general framework for analyzing this type of algorithms)
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A new angle for (asynchronized) parallel algorithms

Gleoretical

-

Binary-forking model

\

™

-

innovations | D€Pendence Computational
in the literature Structure | - DAG
"NGess16BGSs20,FNTRIS Parer g
Y pRRREn § = Sommunie
4 4 v )
Configuration Work-Stealing
Space / RIC Scheduler
\ \_ \ / . l j/
4 ) 4 ) 4 ) 4 )
Good Work Simple Good practical
Parallelism efficiency algorithms performance
\_ J \_ J g J \_ J
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Other optimal parallel algorithms in the BF model

Problem Work jep:tnr:

List contraction O(n O(logn)*
Sorting O(nlogn)’ O(logn)*
Semisort o(n)’ 0(logn)*
Random permutation o(n)’ 0(logn)*
Range minimum query 0(n) O(logn)
Tree contraction 0(n) O(logn)*

Ordered-set operations

n
(Union, intersect, diff) (m log (g T 1)) O(logn)

"expected, " with high probability
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Complexity results

Let BF! be the class of algorithms requiring 0(log n) depth/span and
polynomial work in the BF model

NCt €c LS BFc ACY € PRAM poyy S N C?

Let BF (W (n),S(n)) be the class of algorithms requiring S(n) depth/span and
W(n) work

BF G BF € BFcps

Fork-join

[Manuscript from GJS]
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Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided if possible

1 > The binary-forking model and variants

Our suggested model to design and analysis algorithms,
and related complexity results

2 > Optimal algorithms in the new model

All use no or constant rounds of global synchronization
Many are surprisingly simple
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Modern parallel machines are highly asynchronous, and global
synchronization is costly and should be avoided if possible

1 > The binary-forking model and variants

Our suggested model to design and analysis algorithms,
and related complexity results

2 - Optimal algorithms in the new model

All use no or constant rounds of global synchronization
Many are surprisingly simple

Future work on exploring asynchrony in parallel algorithms

Complexity, algorithms, implementation, software, etc.
6/



Modern parallel machines are highly asynchronous, and global
/ Full version of this talk (40 min):
https://www.cs.ucr.edu/~ygu/video/bf.mp4

(or just search “Yan Gu UCR")

Motivations from system and architecture (1:00 — 3:20)
Benchmarking global synchronization cost (4:30 — 6:30)
More discussion for multithreaded models (11:30 — 18:00)
Complexity theory (18:00 — 19:00)

Related work in the BF model (19:00 — 21:20)

List contraction in more details (22:00 — 33:00)

How does this idea generalize to other problems (33:00 — 36:00)
\Comparison sort and ordered-set operations (36:40 — 38:(&

68
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