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Sequential Iterative Algorithms

Process objects one by one in order
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Parallelizing Sequential Iterative Algorithms

Identify the dependences among objects
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dependence graph (DG)

Ideal Parallel Algorithm

- Parallelize vertices as much as possible

- Process a vertex only when it is ready
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- Round-efficiency

- Work-efficiency
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Analysis is based on the binary-forking model (with TAS)

- Work: total number of operations

- Span: length of the longest execution path

Keep the algorithms efficient

- Round-efficiency: ෨𝑂(𝐷) span (𝐷=longest path length of the given DG)

- Work-efficiency: 𝑂(𝑊) work (𝑊=the cost of the sequential algorithm)

- Near work-efficiency: ෨𝑂(𝑊) work

Some algorithms could not be parallelized efficiently

Efficiently Parallelizing Algorithms

important for practical performance

not equivalent to optimal span



Example: Longest Increasing Subsequence (LIS)

Given a sequence 𝑠1…𝑠𝑛
The LIS problem finds the longest subsequence 𝑠∗ of 𝑠

Elements in 𝑠∗ are strictly increasing

8 4 97 3 1 5 2 6



Example: Longest Increasing Subsequence (LIS)

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1
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Sequentially we can compute this in 𝑶(𝒏 𝐥𝐨𝐠𝒏) cost 

length of LIS ending with 
the 𝑖-th object



Example: Longest Increasing Subsequence (LIS)

8 4 97 3 1 5 2 6

Existing parallel algorithms are not nearly work-efficient or round efficient
- Galil et al.(Parallel Distrib 1994), Krusche, et al.(PPAM 2009), Nakashima et al. (ISPDC 

2002), Semé, Thierry, et al. (ICCSA 2006), Thierry, et. al. (SPAA 2001) have Ω(𝑛1.5) work
- Alam and Rahman’s algorithm (IPL 2013) has Θ 𝑛 span
- Krusche and Tiskin’s algorithm (SPAA 2010) has ෨𝑂 𝑛 log2 𝑛 work and ෨𝑂(𝑛2/3) span



Example: Longest Increasing Subsequence (LIS)

8 4 97 3 1 5 2 6

General approaches / frameworks
- Do not directly give efficient solutions to LIS



Deterministic Reservations

- Access all unprocessed objects each round
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In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness
8

4 9

7

3

1

5

2

6

??

?

?

?

?
?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?
?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?

?

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

8

4 9

7

3

1

5

2

6

?

?

In a high level:

Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Deterministic Reservations

- Access all unprocessed objects each round

- Check their readiness

- Process the ready objects

- Work-efficient only when the work 
decreases geometrically in every round

- Θ(round ⋅ 𝑛) work for LIS

- 𝑂 𝑛2 worst-case
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Proposed by Blelloch et al. (PPoPP 2012), used in algorithms from (Shun et al., SODA 2015)



Activation-based Approaches

- Activate some successors based on the 
edges in the DG
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Activation-based Approaches

- Activate some successors based on the 
edges in the DG

- Process the ready ones

8

4 9

7

3

1

5

2

6

Used in Blelloch et al.(SPAA 2012, SPAA 2020), M. Fischer and A. Noever (SODA 2018) , generalized by Blelloch et al..(SPAA 2020)



Activation-based Approaches

- Activate some successors based on the 
edges in the DG

- Process the ready ones

- Go through all the edges

- Take Θ(𝑚) work for LIS (𝑚 =#edges in the DG)

- 𝑚 can be up to Θ(𝑛2)
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Used in Blelloch et al.(SPAA 2012, SPAA 2020), M.(Fischer and A.(Noever (SODA 2018) , generalized by Blelloch et al.((SPAA 2020)
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Cost of single 
readiness check

can be fast
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This Work

Phase-parallel framework to analyze dependences

- Core concept: rank

- Vertex-centric manner: avoid checking all the edges

Two general techniques to design algorithms in this framework

- Type 1 (more interesting problem in our paper)

- Type 2 (LIS problem is here)



Phase-parallel Framework

A general technique to parallelize the iterative algorithms

Formally define rank from the independence system (𝑆, ℱ)

- Feasible set: ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- Maximum feasible set: MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- Rank: rank 𝑥 = |MFS(𝑥)|



Apply to LIS
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Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}
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Apply to LIS

- ℱ 𝑥 = {𝐸 ∈ ℱ: 𝐸 ⊆ 𝑥↓, 𝑥 ∈ 𝐸}

- MFS 𝑥 = arg max
𝐸∈ℱ 𝑥

|𝐸|

- rank 𝑥 = |MFS(𝑥)|

With certain conditions, the
rank of an object is its depth in DG 

rank=1 rank=2 rank=3
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ending with object 𝑥

LIS ending with object 𝑥

Given an object 𝑥

The earliest “phase” 
when an object is ready



Processes objects in the order of ranks

rank=1 rank=2 rank=3

8

4 9

7

3

1

5

2

6



Processes objects in the order of ranks

Challenge

Find the ready objects in each round

Avoid visiting all edges

Solution

“Vertex-centric” approach
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Core idea: select a “pivot” for every object
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selected at uniformly random

If the pivot of an object hasn’t finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes



Core idea: select a “pivot” for every object

8

4 9

7

3

1

5

2

6

Pivot: an unfinished predecessor 
selected uniformly at random

If the pivot of an object haven’t finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes



Core idea: select a “pivot” for every object
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Pivot: an unfinished predecessor 
selected uniformly at random

If the pivot of an object haven’t finished,
this object cannot be ready

We check readiness of an object only
when its pivot finishes



Wake-up and re-pivoting

If the object waked up is not ready

- Update pivot to another unprocessed objects

- Sleep until being waked up the next time
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Wake-up and re-pivoting

Assign a pivot to each object

Choose another pivot if not ready when being 
waked up

Save work as only a few edges are evaluated

If choosing pivots at uniformly random, 
#evaluated edges is 𝑶(𝒏 𝐥𝐨𝐠 𝒏) w.h.p.
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Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}
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Apply to the LIS algorithm

F = {ready at the beginning}

while F ≠ ∅
{

process F

Swoken = {objects woken by F}
Sready = u ∈ Swoken, u is ready

update pivots in Swoken − Sready
F = Sready

}

DP value computation

Readiness check

Pivot reselection



Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8 4 97 3 1 5 2 6

𝑠𝑖

𝑖



Vertex-centric Approach

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖



Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖



Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

8

4

9

7

3

1

5

2

6

𝑠𝑖

𝑖



Vertex-centric Approach
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Vertex-centric Approach

𝑑𝑝 𝑖 = max
𝑗<𝑖, 𝑠𝑗<𝑠𝑖

𝑑𝑝[𝑗] + 1

Readiness check

DP value computation

Pivot re-selection

Above operations can be done by 
a 2D range tree in 𝑂 log2𝑛

[Sun, et al. (PPoPP 2018)]
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Complexity of our parallel LIS algorithm

𝑶(𝒏 𝐥𝐨𝐠𝒏) total wake-ups w.h.p.

𝑶(𝐥𝐨𝐠𝟐 𝒏) by range queries

𝒏input

# wake-ups

per wake-up

- Compute DP values

- Check readiness

- Re-select pivots



Parallel LIS Algorithm

Using our phase-parallel framework and vertex-centric methods,

we parallelize LIS algorithm with

Nearly work-efficient: 𝑂(𝑛 log3 𝑛) work w.h.p.

Round-efficient: 𝑂(𝑟 log2 𝑛) span

𝑛 = input size

𝑟 = the LIS length of the input



Key Techniques

Pivots

Wake-up strategy

Vertex-centric readiness check

More applications in Type-2 approach

- Other range-search-based greedy or dynamic programming

- Maximal independent set (MIS) using wake-up strategy only



Type-2 approach

Cost of single
readiness check

Polylog
((by range queries))

# candidates in 
next round

A few successors
((by wake-up strategy))



Type-1fapproach

Type-2 approach

Cost of single
readiness check

Trivial

Polylog
((by range queries))

# candidates in 
next round

Logarithmic
(byf1-D range queries)

A few successors
((by wake-up strategy))



Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability
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Improved Bounds

Work Span

LIS 𝑂 𝑛 log3𝑛 ∗ 𝑂 𝑟 log2𝑛

MIS 𝑂(𝑛 +𝑚) 𝑂 log2𝑛 ∗

Activity Selection
(weighted)

𝑂(𝑛 log 𝑛) 𝑂(𝑟 log 𝑛)

Activity Selection
(unweighted)

𝑂(𝑛 log 𝑛) 𝑂 log 𝑛 ∗

* with high probability

Huffman tree, graph coloring, SSSP, unlimited knapsack, and more in the paper



Experiment Setup

Hardware
- 96 CPU cores (192 hyper-threads)

- 1.5 TiB of main memory

Parallelized Algorithms
- Huffman Tree

- Activity selection

- LIS

- …

Work-efficient algorithms generally perform well



Huffman Tree
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Our algorithm is work-efficient
෨𝑂(𝑟) span for rank 𝑟 (tree height)

The rank of the test data is low

The algorithm performs well

- 21.26x speedup to the sequential

21.26x



Activity Selection
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𝑛 = 109

Implement with both Type-1 and -2

- Both are work-efficient: O(𝑛 log 𝑛)

- Span is ෨𝑂(𝑟) for rank 𝑟

The algorithm performs well on a 
wide range of rank values

≈400k(Rank)



Longest Increasing Subsequence

1 10 100 1000 10000
10

100

T
im

e
 (

s
e

c
.)

Output size

 Parallel

 Classic seq

LIS algorithm with 𝑂(log2𝑛) parallelizing overheadNearly work-efficient: 𝑂(𝑛 log3 𝑛)

- 𝑂(log2 𝑛) overhead

Run fast on small ranks

- Overhead in work still limits its performance 
for large ranks

Open problem:

𝑂(𝑛 log 𝑛) work with good parallelism?

(Rank)



Summary

Motivation

- Many existing sequential iterative algorithms can be highly parallel

- Parallelize these algorithms efficiently

New Techniques: general to many algorithms

- Phase-parallel framework

- Type-1 and Type-2 approaches 

New algorithms (many improving best known bounds)

- LIS, activity selection, MIS, Huffman tree, SSSP, …



Future Work

Can LIS problem be solved in 𝑂(𝑛 log 𝑛) with good parallelism?

Can our techniques apply to other problems?



Thank you
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