
PaC-trees:
Supporting Parallel and Compressed

Purely-Functional Collections

Laxman Dhulipala1, Guy Blelloch2, Yan Gu3, Yihan Sun3

1 University of Maryland, 2 Carnegie Mellon University, 3 UC Riverside

Artifacts available and reusable!
Library available on GitHub:
https://github.com/ParAlg/CPAM

https://github.com/ParAlg/CPAM

Collection Data Types [sequences, sets, maps]

• A collection of data [e.g., sequences, ordered sets, ordered maps]

• Very commonly-used in programming!

• E.g., in C++ STL: vector, (ordered) set, (ordered) map.
• Similar in other languages

Search tree

[sequence]

Collection for inverted index

• Collection of words, each mapping to a collection of documents

Document 1:
The largest blue whale ever recorded had a
length from head to tail of 110 feet and 17 inches.

Document 2:
World's largest blue diamond to come to auction
has sold for $57.5 million.

Word Document list

… …

blue 1, 2

whale 1

largest 1, 2

calories 3

diamond 2

head 1, 3

million 2

eat 4

mouthful 4

Document 3:
Banging your head against a wall for one hour
burns 150 calories.

Collection for inverted index

• Collection of words, each mapping to a collection of documents

Document 1:
The largest blue whale ever recorded had a
length from head to tail of 110 feet and 17 inches.

Document 4:
Blue whales eat half a million calories in one
mouthful.

Document 2:
World's largest blue diamond to come to auction
has sold for $57.5 million.

Word Document list

… …

blue 1, 2, 4

whale 1, 4

largest 1, 2

calories 3, 4

diamond 2

head 1, 3

million 2, 4

eat 4

mouthful 4

Document 3:
Banging your head against a wall for one hour
burns 150 calories.

Collection for graph processing

• A collection of vertices, each mapping to a collection of edges

Collection for geometric queries

• A collection of points in 1D or 2D

• Find all points in a certain range

(𝑎, 𝑏)

(𝑐, 𝑑)

Collection Data Types [sequences, sets, maps]
In parallel?

• [Goal 1] Full interface: as needed in the applications!

Point updates/queries

find

next/previous

rank/n-th

first/last

insert/delete

……

Bulk updates/queries

build flatten

map reduce filter

range append reverse

multi-insert/multi-delete

union/intersection/difference

……

Collection Data Types [sequences, sets, maps]
In parallel?

• [Goal 1] Full interface: as needed in the applications!

• [Goal 2] Concurrency: Multiple threads can work on the same data
structure safely and correctly
• Functional data structure! [immutable]

• Each thread works on a snapshot

• Used in many existing parallel languages/libraries [friendly for parallelism]

• [Goal 3] Parallelism: Bulk operations in parallel

Bulk updates/queries

build flatten

map reduce filter

range append reverse

multi-insert/multi-delete

union/intersection/difference

……

• Parallel binary search trees P-tree in the PAM
library

• Functional data structure using path-copying
• Standard way in functional languages

• General interface for collections: appliable in
many applications

P-trees [Sun et al., PPoPP’17] for parallel collections

5’5

3 8

1 9

𝑇1

4

𝑇2

3’

insert(T1,4)

4

Key-value ~8 bytes

Child pointers 8*2 bytes

Subtree size 4 bytes

Ref. cnt. 4 bytes

Auxiliary info ?

P-trees for parallel collections have large space
overhead!

5’5

3 8

1 9

𝑇1

4

𝑇2

3’

insert(T1,4)

24+ bytes

[Goal 4] Space-efficiency: avoid high space overhead!

Our PaC-tree and CPAM library

• full interface of sequences, ordered sets, ordered maps ➔
applicable to a wide range of applications

• functional/immutable

• highly-parallel

• fast both in theory and in practice

• space-efficient!

How to Be Space-Efficient?
Put More Data in One Node?

• Multi-way search trees, such as functional B-tree?

• path-copying is expensive

2 5

0 1 3 4 7 96

B-tree (multi-way search tree)

2’ 5’

8 9’7’6’

Put More Data in One Node
But Keep the Tree Binary!
C-tree in Aspen [Dhulipala et al., PLDI’19]

• Aspen: a graph processing library

• Binary trees with multiple entries in a tree node

• Separate the first entry (called head) for copying

• Designed for maintaining edges in graphs, not for general collections

4

2 7

5

3 9

C-tree in Aspen (Compressing nodes in BST)

4’

7’ 8 9’

6

Keep the Tree Binary
But Put More Data Only in LEAVES!
Our new PaC-tree

• [Balance invariant] Weight-balanced: left/right subtree sizes differ within a constant factor

• [Blocking invariant] Any subtree of size B to 2B will be blocked

• The blocks can be further compressed

• We use delta encoding: store the difference relative to the previous

3

6

4 5 7 8

0 1 2

9

10 11 13 14

12

Pac-tree of size 14, B=2

16 17 18 19

Pac-tree of size 4, B=2

Data: 17 19 24 24 29 33 42 50

↓ Δ ↓ Δ ↓ Δ ↓ Δ ↓ Δ ↓ Δ ↓ Δ ↓

Encoded data: 17 2 5 0 5 4 9 8

Keep the Tree Binary
But Put More Data Only in LEAVES!
Our new PaC-tree

• [Balance invariant] Weight-balanced: left/right subtree sizes differ within a constant factor

• [Blocking invariant] Any subtree of size B to 2B will be blocked

• Internal nodes are cheap to copy!

3

6

4 5 7 9

0 1 2

(Our new) PaC-tree (Compressing leaves in BST)

3’

7’ 8 9’

6’

PaC-trees:
• Low space usage
• Parallel and efficient algorithms

PaC-tree – Space Bounds

Theorem. The total space of a PaC-tree with block size B +

delta encoding, on a set 𝐸 of 𝑛 integer keys is:
𝑠(𝐸) + 𝑂(𝑛/𝐵 + 𝐵)

PaC-trees:
• Low space usage
• Parallel and efficient algorithms
✓

?

𝑠(𝐸) = the space to store 𝐸 in an array using delta encoding [lower bound]

Extended Join-based framework in PAM

• The function “join” is a black box – all other algorithms are based on “join”

• Path-copying: just copy a few nodes in join

• 𝑇 = Join(𝑇𝐿, 𝑒, 𝑇𝑅) : 𝑇𝐿 and 𝑇𝑅 are two trees, 𝑒 is an entry.

• 𝑇𝐿 < 𝑒 < 𝑇𝑅

• Returns a valid tree 𝑻 = 𝑻𝑳 ∪ 𝒆 ∪ 𝑻𝑹 e

2 10

𝑇𝐿

𝑇𝑅

(Rebalance if necessary)

𝑇 =

Extended Join-based framework in PAM

• How to extend the algorithms to PaC-trees?

• Deal with the blocks?

• Add a primitive expose(T), returns a “left child”, a “root” and a “right child”

• We carefully redesigned “join” and “expose” abstractions, and keep the high-
level algorithmic ideas in PAM unchanged!

• Keep blocking invariant true all the time!

3

4 5 60 1 2

8

9 10 11 12 8, ,3

4 5 60 1 2

9 10 11 12⇒
expose

0 1 2 3 4

21

0

4

3

, ,⇒
expose

B=3 in the examples

Example: combining two trees

5

11

8 9 17 18

0 1 2

19

20 21 25 28

22 3 15 23 33

if 𝑇1 = ∅ then return 𝑇2
if 𝑇2 = ∅ then return 𝑇1
𝐿2, 𝑘2, 𝑅2 = expose(𝑇2)
𝐿1, 𝑏, 𝑅1 =split(𝑇1, 𝑘2)

In parallel:
𝑇𝐿 =Union 𝐿1, 𝐿2
𝑇𝑅 =Union(𝑅1, 𝑅2)

return Join(𝑇𝐿, 𝑘2, 𝑇𝑅)

union(𝑻𝟏, 𝑻𝟐)
(example for in-place updates. Functional updates
can be performed by copying corresponding
nodes in the join algorithm.)

Example: combining two trees

5

11

8 9 17 18

0 1 2

19

20 21 25 28

22
3

15

23

33

if 𝑇1 = ∅ then return 𝑇2
if 𝑇2 = ∅ then return 𝑇1
𝐿2, 𝑘2, 𝑅2 = expose(𝑇2)
𝐿1, 𝑏, 𝑅1 =split(𝑇1, 𝑘2)

In parallel:
𝑇𝐿 =Union 𝐿1, 𝐿2
𝑇𝑅 =Union(𝑅1, 𝑅2)

return Join(𝑇𝐿, 𝑘2, 𝑇𝑅)

union(𝑻𝟏, 𝑻𝟐)

𝐿2

𝑅2

𝑘2

(example for in-place updates. Functional updates
can be performed by copying corresponding
nodes in the join algorithm.)

Example: combining two trees

5

118 9 17 180 1 2
19

20 21 25 28

22

3

15

23

33

if 𝑇1 = ∅ then return 𝑇2
if 𝑇2 = ∅ then return 𝑇1
𝐿2, 𝑘2, 𝑅2 = expose(𝑇2)
𝐿1, 𝑏, 𝑅1 =split(𝑇1, 𝑘2)

In parallel:
𝑇𝐿 =Union 𝐿1, 𝐿2
𝑇𝑅 =Union(𝑅1, 𝑅2)

return Join(𝑇𝐿, 𝑘2, 𝑇𝑅)

union(𝑻𝟏, 𝑻𝟐)

𝐿2

𝑅2

𝑘2

𝐿1

𝑅1

(example for in-place updates. Functional updates
can be performed by copying corresponding
nodes in the join algorithm.)

Example: combining two trees

5

8 9 17 180 1 2

19

20 21 25 28

22
3

15

23

33

if 𝑇1 = ∅ then return 𝑇2
if 𝑇2 = ∅ then return 𝑇1
𝐿2, 𝑘2, 𝑅2 = expose(𝑇2)
𝐿1, 𝑏, 𝑅1 =split(𝑇1, 𝑘2)

In parallel:
𝑇𝐿 =Union 𝐿1, 𝐿2
𝑇𝑅 =Union(𝑅1, 𝑅2)

return Join(𝑇𝐿, 𝑘2, 𝑇𝑅)

union(𝑻𝟏, 𝑻𝟐)

𝐿2

𝑅2

𝑘2

𝐿1
𝑅1union union

(example for in-place updates. Functional updates
can be performed by copying corresponding
nodes in the join algorithm.)

11

Example: combining two trees

5

8 9 17 180 1 2

19

20 21 25 28

223

15

23 33

if 𝑇1 = ∅ then return 𝑇2
if 𝑇2 = ∅ then return 𝑇1
𝐿2, 𝑘2, 𝑅2 = expose(𝑇2)
𝐿1, 𝑏, 𝑅1 =split(𝑇1, 𝑘2)

In parallel:
𝑇𝐿 =Union 𝐿1, 𝐿2
𝑇𝑅 =Union(𝑅1, 𝑅2)

return Join(𝑇𝐿, 𝑘2, 𝑇𝑅)

union(𝑻𝟏, 𝑻𝟐)

𝑘2

(example for in-place updates. Functional updates
can be performed by copying corresponding
nodes in the join algorithm.)

11

Example: combining two trees

5

8 9 17 180 1 2

19

20 21 25 28

223

15

23 33

if 𝑇1 = ∅ then return 𝑇2
if 𝑇2 = ∅ then return 𝑇1
𝐿2, 𝑘2, 𝑅2 = expose(𝑇2)
𝐿1, 𝑏, 𝑅1 =split(𝑇1, 𝑘2)

In parallel:
𝑇𝐿 =Union 𝐿1, 𝐿2
𝑇𝑅 =Union(𝑅1, 𝑅2)

return Join(𝑇𝐿, 𝑘2, 𝑇𝑅)

union(𝑻𝟏, 𝑻𝟐)
(example for in-place updates. Functional updates
can be performed by copying corresponding
nodes in the join algorithm.)

(Theoretical guarantees are provided in the paper)

11

Lots of Functions and Applications Supported

• Functions supported
• Sequences: Build, map, filter, reduce, take, n-th, findFirst, append, reverse

• Ordered set and map: (most functions for sequences), next, previous, rank, range,
insert, union, intersection, difference, …

• All of them have theoretical bounds

• Applications:
• 1D interval queries

• 2D range queries

• Inverted indexes

• Graph processing

Experiments

• 72-core Dell PowerEdge R930 (with two-way hyper-threading)

• 1TB of main memory

• Using C++ and the work-stealing scheduler from Parlaylib

Running time relative to the fastest

0

2

4

6

B
u

il
d

U
n

io
n

m
u

lt
i-

in
se

rt

In
te

rs
e

c
ti

o
n

d
if

fe
re

n
c

e

M
a

p

re
d

u
c

e

fi
lt

e
r

fi
n

d

ra
n

g
e

PaC-tree (no encoding)

PaC-tree (encoded)

P-tree (PAM)

Microbenchmarks, compared to P-trees (PAM)

[1.61GB] 2.5x saving

[0.93GB] 4.3x saving

[4.00GB]

Input size 𝑛 = 108,
block size 𝐵 = 128
64bit-64bit key-values

(Functional tree, no blocking
leaves or compression)

Running time relative to the fastest

0

2

4

6

B
u

il
d

U
n

io
n

m
u

lt
i-

in
se

rt

In
te

rs
e

c
ti

o
n

d
if

fe
re

n
c

e

M
a

p

re
d

u
c

e

fi
lt

e
r

fi
n

d

ra
n

g
e

PaC-tree (no encoding)

PaC-tree (encoded)

P-tree (PAM)

Microbenchmarks, compared to P-trees (PAM)

2.5x saving

4.3x saving

Input size 𝑛 = 108,
block size 𝐵 = 128
64bit-64bit key-values

(Functional tree, no blocking
leaves or compression)Tradeoff of blocking + encoding

- may improve performance because of smaller memory
footprint + I/O friendliness
- can also cause overhead due to encoding/decoding

PaC-trees achieve similar or better time on most tested
functions, while being 2-4 times more space-efficient

than P-trees in PAM

(Lower is better)

0

1

2

B
F

S

B
C

M
IS

M
e

m
o

ry

B
F

S

B
C

M
IS

M
e

m
o

ry

B
F

S

B
C

M
IS

M
e

m
o

ry

Pac-tree Aspen

LiveJournal com-Orkut Twitter

PaC-trees applied to graphs, compared to
C-trees (Aspen) (Functional tree, blocking all tree nodes,

specifically for edges in graphs)

PaC-tree is almost always
faster than Aspen on all
benchmarks and graphs

PaC-tree is also 1.2-1.5x more
space efficient than Aspen

Running time/memory relative to the best

Both PaC-tree and Aspen use delta encoding

(Lower is better)

More experiments

• Performance vs. block size

• Space vs. block size

• Inverted indices

• interval tree

• 2D range tree

• graph streaming

• Some of them also requires augmentation, see more details in the paper.

Summary

• PaC-Tree

• Blocked leaves, can be further encoded

• Provable guarantee in both space and time

• Safe and efficient for parallelism

• CPAM library

• Full interface for collection for a wide range of applications

• Outperforms previous non-compressed data structure for collections (P-trees),

and more space-efficient!

• Outperforms previous compressed data structure for certain applications (C-trees for graph processing)

and more space-efficient!

Artifacts available and reusable!
Library available on GitHub:
https://github.com/ParAlg/CPAM

https://github.com/ParAlg/CPAM

