GeoGraph: A Framework for Graph Processing on Geometric Data

Yiqgiu Wang Shangdi Yu Laxman Dhulipala Yan Gu Julian Shun
MIT CSAIL MIT CSAIL MIT CSAIL UC Riverside MIT CSAIL
yigiuw @mit.edu shangdiy@mit.edu laxman@mit.edu ygu@cs.ucredu jshun@mit.edu
Abstract using high-level functions, which the frameworks provide

In many applications of graph processing, the input data is
often generated from an underlying geometric point data
set. However, existing high-performance graph processing
frameworks assume that the input data is given as a graph.
Therefore, to use these frameworks, the user must write or
use external programs based on computational geometry algo-
rithms to convert their point data set to a graph, which requires
more programming effort and can also lead to performance
degradation.

In this paper, we present our ongoing work on the Geo-
Graph framework for shared-memory multicore machines,
which seamlessly supports routines for parallel geometric
graph construction and parallel graph processing within
the same environment. GeoGraph supports graph construc-
tion based on k-nearest neighbors, Delaunay triangulation,
and B-skeleton graphs. It can then pass these generated
graphs to over 25 graph algorithms. GeoGraph contains high-
performance parallel primitives and algorithms implemented
in C++, and includes a Python interface. We present four ex-
amples of using GeoGraph, and some experimental results
showing good parallel speedups and improvements over the
Higra library. We conclude with a vision of future directions
for research in bridging graph and geometric data processing.

1 Introduction

Graphs are a fundamental way to represent relationships
in data, and have a variety of real-world applications. For
example, they are used in social network analysis, Internet
analysis, machine learning, bioinformatics, and transporta-
tion planning. Due to the massive sizes of graphs today,
analyzing graphs efficiently necessitates high-performance
parallel programs. However, writing such programs can
be challenging for non-experts in high-performance com-
puting. Fortunately, there exists a variety of programming
frameworks for efficient graph processing that reduce the
burden on the user by allowing them to write programs

38

highly-optimized parallel implementations for under the hood
(see[6,7,9, 16,29, 32, 36, 41, 51, 66] for surveys of graph
processing frameworks).

As far as we know, existing high-performance graph pro-
cessing frameworks assume that the user provides input data
in the format of a graph. While the data that one wishes to
process is sometimes naturally provided in the form of a
graph (e.g., social networks and Internet graphs), oftentimes
the data is presented in the form of points in n-dimensional
space (we refer to this type of data as geometric data), without
any relationship information among the points. Although data
analysis can be performed on the points themselves, it may
be desirable to convert the geometric data into a graph and
take advantage of graph algorithms to uncover better insights
into the data. In particular, the graph would contain vertices
that correspond to the original points, with an edge appearing
between two vertices if their corresponding points are "simi-
lar enough". The output of the graph algorithms may then be
used for further processing with geometric algorithms.

The approach of converting the original data into a graph
is commonly used in machine learning to perform semi-
supervised learning [54]. Here the data points are associated
with feature vectors, and two data points are connected in the
graph if their features are similar enough based on a function
chosen for the application. One can then run a graph clustering
algorithm on this graph, and each resulting cluster will corre-
spond to objects that should have the same label in the original
data set [11, 25, 34, 37, 38]. This approach can potentially
produce higher-quality clusters than using a spatial clustering
algorithm on the original data [34, 43]. Transportation plan-
ning is another example where the approach of converting
data to a graph format is commonly used [4, 5, 14]. Here the
original points may correspond to physical locations, and the
edges between points are determined by route availability.

With most existing graph processing frameworks today, a
user who wishes to process data that is not given in graph
format is responsible for writing or using another tool to con-
vert their data into a graph format that is compatible with

the graph framework that they are using. To ensure that the
end-to-end running time is fast, the user needs to write or
use efficient algorithms for data conversion, which can be
non-trivial. This process often involves using routines from
computational geometry, such as the Delaunay triangulation,
nearest-neighbor searches, range searches, well-separated pair
decompositions, and visibility tests. While there exists various
parallel libraries that support graph generation from geomet-
ric data [3, 17, 24, 45], they do not have an interface with
existing graph processing frameworks. Linking these libraries
with graph frameworks significantly increases the burden on
the user. Furthermore, even if the user is able perform the data
conversion efficiently, the process will still perform unnec-
essary disk I/O’s because existing graph frameworks often
assume that the input data is stored on disk. These extra disk
accesses can become a performance bottleneck if the rest
of the application is running in memory. To improve pro-
grammability and performance, it is therefore important to
have a unifying framework that supports both graph algo-
rithms and computational geometry routines, with efficient
methods for data conversion between the graph and geometric
data formats. Such a framework can also benefit geometric
algorithms that use graph algorithms as subroutines, such
as density-based spatial clustering [63, 64] and motion plan-
ning [18].

This paper introduces our ongoing work on designing a
high-performance framework, called GeoGraph, that bridges
the gap between parallel graph processing and parallel compu-
tational geometry routines that are used for graph construction.
GeoGraph is currently implemented for shared-memory mul-
ticore machines. GeoGraph is a C++ library with a Python in-
terface, consisting of parallel algorithms for geometric graph
generation and graph processing, as well as functions for
reading and writing data. It combines geometric graph con-
struction algorithms currently being developed within the
Pargeo computational geometry library [1] with graph algo-
rithms and data formats from the Graph Based Benchmark
Suite [19, 21]. Users of GeoGraph will be able to generate
a variety of common geometric graphs, construct efficient
graph data structures, and run graph algorithms seamlessly
within one Python session.

We demonstrate how to use GeoGraph API to write four
examples of applications that combine geometric graph con-
struction with graph algorithms: connected components on a
filtered k-NN graph, hierarchical clustering on a k-NN graph,
Euclidean minimum spanning tree using a Delaunay triangula-
tion, and shortest paths on a B-skeleton graph. Experimentally,
we show that running these algorithms completely in memory
using GeoGraph is 3.72—7.35x faster than that of having to
write the graph to disk and load it back into memory, which
represents what users would have to do with existing tools.
We also compare with Higra [46], an existing library that
supports graph algorithms and geometric graph construction
using SciPy [61] and scikit-learn [45]. Higra focuses on hier-

39

Point Data Edges in
on Disk Memory
Graph Graph Data
Generator Structure
Geometry | Graph
Algorithms - Algorithms
- -
\\\ Pargeo 4// \\‘ GBBS 4//

A A

ParlayLib
(Parallel Scheduler + Primitives)

Figure 1: System architecture of GeoGraph.

archical clustering, and therefore supports a narrower set of
algorithms than GeoGraph. We show that GeoGraph achieves
7.5-94.57x speedups over Higra. Our code is publicly avail-
able at https://github.com/ParAlg/GeoGraph.

We conclude with a vision of what we believe are important
problems to address in order to fully bridge geometric data
processing with graph processing.

2 GeoGraph Framework and API

In this section, we outline the architecture of GeoGraph and
describe its application programming interface (API). We
illustrate the components of GeoGraph in Figure 1.

GeoGraph is written in C++ and includes a Python inter-
face, which enables both high performance and ease of use.
GeoGraph uses graph algorithms from the publicly-available
Graph Based Benchmark Suite (GBBS) [19, 21], and geomet-
ric graph construction algorithms from the Pargeo library [1],
which is a work in progress. Internally, both libraries use the
parallel scheduler and primitives of the ParlayLib library [8]
to express parallelism and exploit a set of highly-optimized
shared-memory parallel primitives.

The user can load a geometric point data set from disk
using our data loader. Graphs can be generated from the geo-
metric data using geometric algorithms from Pargeo, which
we describe in Section 2.1. The output is an edge list, which is
then passed to GBBS, where it is converted into a compressed
graph representation, on which over 25 graph algorithms can
then be run. Section 2.2 describes in more detail the graph rep-
resentation and the algorithms available in GBBS. Depending
on the application, the user can either directly use the output
of the graph algorithm, or feed the output back into a geom-
etry algorithm in Pargeo for further processing. GeoGraph
combines the functionalities provided by GBBS and Pargeo
seamlessly, and enables a user to use these functionalities in
a Python interface without switching context.

2.1 Geometric Graph Construction

We now describe the geometric graph construction algorithms
that are currently provided by GeoGraph.

k-Nearest Neighbor Graphs. Our framework supports com-
puting the k-nearest neighbor (k-NN) graph of a point data
set. k-NN graphs have a variety of applications, such as graph
clustering [11, 25, 34, 37, 38], manifold learning [56], outlier
detection [31], and proximity search [13, 44, 49]. The k-NN
graph is a directed graph on a set of P points in a metric
space, such that P represents the vertex set, and a directed
edge exists from vertex p to vertex ¢ if the distance between
p and g is among the k smallest distances from p to points in
P\ {p}. We compute the k-NN by traversing a kd-tree, a bi-
nary tree data structure commonly used for k-NN queries [26].
A kd-tree traversal to compute k-NNs will first visit subtrees
close to the input point, and prune farther tree nodes that can-
not possibly contain the k-NNs. We first construct a kd-tree,
then apply k-NN queries for all of the points in P, and finally
generate k-NN graph based on the query results. To build the
tree, we use a parallel splitting algorithm to split the points
across the two children subtrees, and recursively construct
each subtree in parallel. The queries are run in parallel in a
data-parallel fashion.

Spatial Network Graphs. Spatial network graphs are a class
of geometric graphs on which various graph metrics are often
computed [4, 5]. We discuss the spatial network graphs in
the context of point data sets in the Euclidean plane, which
usually arise from geographic coordinates. The Delaunay
graph is directed related to the Delaunay triangulation of a
point set [18], where each edge of the triangulation is treated
as an undirected edge with weight equal to the Euclidean
distance between the two endpoints. The Delaunay graph
is useful because its edges are a superset of that of other
graphs, such as the Euclidean minimum spanning tree and
B-skeleton graphs [35], both of which have a variety of real-
world applications [2, 33, 47, 48, 57, 60, 62, 65]. We use the
parallel incremental Delaunay triangulation implementation
from the Problem Based Benchmark Suite [52].

The [-skeleton is defined for a point set P in the Euclidean
plane, where each point in P is a vertex of the graph. There
is an undirected edge between a pair of points p and g if for
any other point r, the angle prg is smaller than a threshold
derived from parameter 3. The B-skeleton shares the same
vertex set as the Delaunay graph, but only contains a subset
of the Delaunay edges [60]. We use the kd-tree to construct
the B-skeleton graph efficiently in parallel. Specifically, for
each edge of the Delaunay graph in parallel, we determine
whether to keep the edge by checking whether there exists a
third point in a region defined by the edge and the parameter
. The check can be reduced to several range searches in a
kd-tree. The B-skeleton generalizes other well known spatial
network graphs, such as the Gabriel graph and the relative
neighborhood graph [33, 35].

40

2.2 Parallel Graph Processing

In this section, we present our approach to parallel graph
processing of geometric data sets in GeoGraph, which builds
on the algorithms and data structures from the Graph Based
Benchmark Suite (GBBS) for parallel graph processing [19,
21]. In what follows, we describe some of the key features of
GeoGraph in the context of parallel graph processing.

Representing and Building Geometric Graphs. GeoGraph
supports two graph representations, namely the compressed
sparse row (CSR) and edge/coordinate list (COO) formats. In
CSR, we are given two arrays, I and A, where the incident
edges of a vertex v are stored in {A[I[v]],...,A[I[v+1] —1]}.
In COO, we are given an array of pairs (#,v) corresponding
to edge endpoints. Our framework supports weighted graphs,
where edge weights are interleaved with the neighbors of the
vertex in the CSR format, and stored as the third entry in each
edge tuple in the COO format.

When generating geometric graphs, we typically do not
know the number of edges that will be present in the graph,
or the number of edges that will be incident to each vertex
before running the generation algorithm, and thus generating
geometric graphs directly in a CSR format is difficult. Instead,
we first generate the (weighted) edge list corresponding to
the graph in COO format, and then supply this edge list to a
procedure which builds a (weighted) graph in the CSR format.
There are two main advantages to representing the graph
in CSR format. First, representing the graph in this format
enables us to apply lossless compression techniques from
the Ligra+ framework [53], which are provided in GBBS.
Second, representing the graph in CSR format is crucial in
many parallel graph algorithms that perform random access
to the edges incident to arbitrary vertices.

Applying Graph Algorithms to Geometric Graphs. GBBS
provides fast and theoretically-efficient parallel solutions to
over 25 important graph problems, ranging from basic prob-
lems such as connectivity and breadth-first search, to more
challenging and computationally difficult problems such as
k-truss, k-clique counting [50], minimum spanning forest,
strong connectivity, and biconnectivity, among others [19, 21].
These algorithms are implemented using high-level primitives,
such as functions over subsets of vertices and edges, and oper-
ations on parallel priority queues. GBBS provides optimized
multicore implementations of these primitives under the hood.
We describe some natural examples of running GBBS algo-
rithms on geometrically-derived graphs in Section 3.

2.3 Python API

In this section, we now give an overview of the Python
API in GeoGraph, which is illustrated in Figure 2. There
are two main components of the API: the first component

from geograph import *
P = loadPoints(file)

edges = KNNGraph (P,
edges = DelaunayGraph (P,
edges = GabrielGraph (P,
edges = BetaSkeleton (P,

k, epsilon = -1, weighted = False)
welghted = False)

weighted = False)

beta, weighted = False)

//;E: loadFromEdgelList (edges, symmetric =

~

True, \
weighted = False)
Output = G.HierarchicalAgglomerativeClustering(linkage)
Output = G.DeltaStepping(source, delta)
Output = G.MinimumSpanningTree ()
Output = G.Components ()
Output = G.BFS(source)
Output = G.PageRank(
Output = G.KCore()

/

Figure 2: The Python API of GeoGraph.

involves loading and processing a point data set to form a set
of geometric graph edges, and the second component involves
converting these edges into a graph in the CSR format, and
running graph algorithms on this graph. We use the NumPy
package [30] to keep intermediate data structures in memory
and avoid disk I/Os.

The loadPoints function takes the file path of a point
data set and returns a NumPy array P of shape (#points,
dimensionality). GeoGraph provides several functions to
compute a geometric graph over P to form a graph in COO for-
mat (top of Figure 2). By default, the graph is unweighted, but
a weighted graph using Euclidean distances can be generated
by passing True for the weighted argument. For example,
the user can construct an unweighted Delaunay graph on P by
calling

>>> edges = DelaunayGraph (P)

This will return a NumPy array of shape (#edges, 2), where
each row contains the IDs of the two endpoints of an undi-
rected edge. For weighted graphs, the edge list returned will be
of shape (#edges, 3), where the additional column contains
the edge weights. The k-NN graph generator takes an addi-
tional parameter epsilon, and filters out edges with weight
greater than epsilon when itis set to be a value greater than O
(by default epsilon is set to —1, with no edges being filtered).
All of the generators, except KNNGraph, generate symmetric
graphs where each edge appears in both directions.

The edge list can be converted to a compressed graph rep-
resentation by calling:

>>> G = loadFromEdgelList (edges)

This function takes additional parameters which enable a user
to specify whether the edges should be made symmetric (True
by default), and whether to take in edge weights (False by
default). Then, numerous graph algorithms can be called from

41

10

o N A~ O

0 2 4 6 8 10

Figure 3: Example of running connected components on the
3-NN graph of a 2-dimensional point data set, where edges
with weight greater than 3.2 are filtered out. The vertices of
each color correspond to a connected component.

the compressed graph data structure G (bottom of Figure 2).
For example, the following will compute the connected com-
ponents of G, where the component IDs are stored in the list
C:

>>> C = G.Components()

For HierarchicalAgglomerativeClustering, the
user specifies a linkage parameter, such as "single",
"average", or "complete", as the linkage criteria [40].

3 Examples of using GeoGraph

In this section, we illustrate some examples of using Geo-
Graph to run graph algorithms on graphs constructed from
a geometric data set. We present some visualizations of the
outputs on a small data set.

A good example is to consider applying graph clustering
algorithms to geometric graphs. For example, consider com-
puting the k-NN graph of a point set, generating the sym-
metrized (undirected) graph by making each directed edge
bi-directional, and then applying a parallel connected compo-
nents algorithm to this graph. To remove noise and produce
more meaningful clusters, we can filter edges with weight
larger than a certain value. The following code shows how
to run connected components on a 3-NN graph that filters
the edges with weight greater than 3.2. We construct a sym-
metrized graph data structure based on the k-NN edges, and
then run the connected components algorithm, which returns
the component ID of the vertices. A visualization of the com-
ponents on a small data set is shown in Figure 3.

>>> from geograph import *

>>> P = loadPoints("data.csv")

>>> edges = KNNGraph(P, k=3, epsilon=3.2)

>>> G = loadFromEdgelist (edges, symmetric=True)
>>> C = G.Components()

We also consider applying hierarchical graph clustering
algorithms to an input weighted graph. The output of these

Figure 4: Example of running complete-linkage clustering on
the 3-NN graph of a 2-dimensional point data set. We show
the output, a corresponding dendrogram.

algorithms is usually a dendrogram representing the arrange-
ment of clusters. Although efficient spatial hierarchical clus-
tering algorithms exist, an important advantage of using a
graph-based hierarchical clustering method is that the graph-
based method can be run on a sparse geometric graph, like
a k-NN graph with a small value of k or any of the spatial
network graphs described in Section 2.1. By using an efficient
graph-based hierarchical clustering method, like a hierarchi-
cal version of the SCAN algorithm [58], or a graph-based
agglomerative clustering algorithm, we can potentially sig-
nificantly outperform classic approaches that only use the
input point set [34, 43]. The following code shows how to run
complete-linkage clustering on a 3-NN graph. We construct
a symmetric graph based on the k-NN edges, and then run
the clustering algorithm on the graph, which returns a hier-
archy corresponding to a dendrogram. A visualization of the
dendrogram is shown in Figure 4.

>>> from geograph import *

>>> P = loadPoints("data.csv")

>>> edges = KnnGraph (P, k=3, weighted=True)

>>> G = loadFromEdgeList (edges, symmetric=True,

— weighted=True)
>>> CL =
— G.HierarchicalAgglomerativeClustering("complete")

A Euclidean minimum spanning tree (EMST) on a point
data set has various applications, including being used in
single-linkage clustering [28], network placement optimiza-
tion [62], and approximating the Euclidean traveling salesman
problem [59]. A well-known fact is that the EMST is a subset
of the Delaunay triangulation of a graph [33]. We consider
generating a graph containing edges of the Delaunay triangu-
lation, and then passing the graph to a minimum spanning tree
algorithm in GBBS, which is shown in the following code. A
visualization of the minimum spanning tree on a small data
set is shown in Figure 5.

>>> from geograph import *

>>> P = loadPoints("data.csv")

>>> edges = DelaunayGraph (P, weighted=True)
>>> G = loadFromEdgeList (edges, weighted=True)
>>> T = G.MinimumSpanningForest ()

42

10

o N A~ O

0 2 4 6 8 10

Figure 5: Example of running minimum spanning tree on the
Delaunay triangulation graph of a 2-dimensional point data
set. The edges of the minimum spanning tree are shown in
red.

Finally, computing shortest paths on transportation and
infrastructure networks is commonly used for planning [4].
These networks can be generated by constructing spatial net-
works on geometric data. We consider running the A-stepping
single-source shortest paths algorithm [42] on the 3-skeleton
of a point set. The following code shows running the A-
stepping algorithm with source vertex 0 and A = 0.01 on
a PB-skeleton graph with f = 2 (the relative neighborhood
graph).

>>> from geograph import *

>>> P = loadPoints("data.csv")

>>> edges = BetaSkeleton(P, beta=2, weighted=True)
>>> G = loadFromEdgelList (edges, weighted=True)

>>> C = G.DeltaStepping(source=0, delta=0.01)

4 Benchmarking

In this section, we benchmark the performance of GeoGraph
on the four examples in Section 3. Our implementations are all
parallel, except for complete-linkage clustering, whose paral-
lelization is a work in progress. We compare with Higra [46]
(version 0.6.4) for computing a hierarchical clustering on
a k-NN graph and minimum spanning tree on the Delaunay
graph (they do not support the other two examples). The Higra
framework has a Python interface, and calls the SciPy [61]
and scikit-learn [45] libraries serially to construct geomet-
ric graphs. In addition, to demonstrate the advantage of run-
ning graph generation and graph algorithms in memory with-
out transferring intermediate data to and from disk, we com-
pare with a version of GeoGraph where the edges generated
are first written to disk and then loaded back into memory
(GeoGraph-Disk).

We perform all of our experiments on a ¢5.18xlarge in-
stance on Amazon EC2. The instance has 2 x Intel Xeon
Platinum 8124M (3.00GHz) CPUs for a total of 36 cores with
two-way hyper-threading, and 144 GB of RAM. The stor-
age uses Amazon EBS with a General Purpose SSD. We use
two synthetic 2-dimensional data sets, each with 10 million
points. We generate the blobs data set using scikit-learn’s [45]
generator, which produces samples from isotropic Gaussian

(Data set: blobs - 10 million) Values on top of bars display running times in seconds.

BN GeoGraph(T36h)

1% 69.8
N
Delaunay+MST Skeleton+SSSP

I GeoGraph(T36h)

": 10° 7/7 Higra == GeoGraph-Disk(T36h)
(.% \\\ GeoGraph-Disk(T1) =+t GeoGraph(T1)
3 1
£ 10° 1% 66.9 % 76.6
'_
) \
£
£ \
€ & A\
KNN+CC KNN-+CLINK
ata set: uniform - 10 million) Values on top of bars display running times in seconds.
. D fi I Val f bars displ d
§ 10? 7/7 Higra === GeoGraph-Disk(T36h)
53 W\ GeoGraph-Disk(T1) %=t GeoGraph(T1)
1. 1
£ 107 1% o § 73.6
'_
a0 \
c
BT \
2 N 20 N
KNN+CC KNN+CLINK

Delaunay+MST Skeleton+SSSP

Figure 6: Comparison between GeoGraph, GeoGraph with disk I/O, and Higra. T1 corresponds to the serial time and T36h
corresponds to the parallel time on 36 cores with hyper-threading. KNN+CC is connected components on the 3-NN graph;
KNN+CLINK is complete-linkage clustering on the 3-NN graph; Delaunay+MST is minimum spanning tree on the Delaunay
graph; and Skeleton+SSSP is Delta-stepping on the 2-skeleton with Delta set to 0.01. The running time in seconds is displayed at

the top of each bar.

blobs with varying variances. We also use a uniform data set
consisting of data points generated uniformly at random in a
square of side length 10.

In Figure 6, we show the running times of the methods
on the four examples. Using 36-cores with hyper-threading,
GeoGraph achieves 7.49x—-14.99x self-relative speedup. Com-
pared with the baseline that writes the graph to disk and
loads it back into memory, GeoGraph achieves 3.72—7.35x
speedup.’

Compared to Higra, our minimum spanning tree computa-
tion on the Delaunay graph is 104—112x faster. This is due to
GeoGraph supporting faster graph generation and a more op-
timized minimum spanning tree algorithm. We encountered
internal errors in Higra when computing the k-NN graph and
complete-linkage clustering on the data sets with 10 million
points. Therefore, we also tested Higra on smaller data sets
with 100 thousand points, drawn from the same distributions.
On 36 cores with hyper-threading, Higra takes 1.53 and 1.58
seconds for the blobs and uniform data sets, respectively,
while GeoGraph takes 0.204 and 0.207 seconds. Overall, our
graph generation is 11.4-112.9x faster than Higra while our
graph algorithms are 6.63—13.69x faster. While Higra gen-
erates graphs by calling the Python libraries SciPy for the
Delaunay graph and scikit-learn for the k-NN graph serially,
we use optimized parallel C++ implementations to convert ge-

I'The disk I/O times varied across runs, likely due to the nondeterminism
of Amazon EBS.

43

ometric data sets to graphs. Overall, GeoGraph is 7.5-94.57x
faster than Higra.

5 Conclusion and Vision

Geometric data processing and graph processing have been
the subjects of intense theoretical and empirical studies over
the past few decades, but unfortunately these subjects have
often been considered in isolation, especially from a systems
perspective. In this paper, we have presented our ongoing
work on GeoGraph, a shared-memory multicore framework
that enables users to run graph algorithms on graphs con-
structed with computational geometry primitives within the
same interface. Using GeoGraph, we have shown how users
can easily perform tasks on graphs generated from on geo-
metric data sets, including clustering, finding the minimum
spanning tree, and computing shortest paths, which require
high-performance geometry and graph processing primitives.

For future work, we are interested in using GeoGraph to
study algorithms and applications in geometry that can benefit
from using efficient graph algorithms internally. For exam-
ple, computing the shortest path on a visibility graph is an
essential building block of motion planning algorithms [18].
Geometric clustering algorithms, such as DBSCAN [23, 63]
and hierarchical spatial clustering [12, 64], also rely on un-
derlying connected components or minimum spanning tree
algorithms. These applications provide another context for

the interaction between geometric data processing and graph
processing, and further stems the need for a unified frame-
work.

The graph construction methods that are currently sup-
ported in GeoGraph work well for low-dimensional data sets.
We believe that there is a significant potential for future work
on designing efficient graph construction algorithms for high-
dimensional data sets, such as approximate k-NN graph con-
struction, which has applications to data mining and informa-
tion retrieval [10, 15, 22, 27, 39, 55]. Studying how different
graph construction methods affect the quality of the down-
stream tasks is an important research direction.

Another interesting challenge is to design efficient visu-
alization techniques which present both the input point set
and geometric graph realizations of it, and illustrate algorithm
outputs on both. We envision future systems to support visu-
alization techniques that are parallel and scale to large data
sets.

Due to the rapid changes in real-world data, future systems
should also consider the setting where the input data set re-
ceives batches of updates (point insertions, deletions, or mod-
ifications). These systems would then update the associated
graph, which could be dynamically represented using an effi-
cient parallel batch-dynamic graph data structure (e.g., [20]).
Finally, due to the large variety of computing resources avail-
able today with different performance characteristics, it is
crucial for future systems to support efficient processing on
different types of hardware, including multicore CPUs, GPUs,
distributed clusters, disks, and domain-specific accelerators.

We envision a future with portable high-performance sys-
tems that can seamlessly bridge geometric data processing
and graph processing on both static and dynamic data. Such
systems will provide novel, interpretable, and high-quality
insights into the structure of geometric data sets using graph
processing, while using parallel algorithms that run in near-
linear work in the sparsity of the input graph, thus potentially
achieving significant speedups over existing quadratic-work
point set clustering and analysis methods.

Acknowledgments

This research was supported by DOE Early Career Award
#DE-SC0018947, NSF CAREER Award #CCF-1845763,
Google Faculty Research Award, Google Research Scholar
Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-
plications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA.

References

[1] Pargeo, an open source library for parallel algorithms
in computational geometry. https://github.com/
wangyiqgiu/pargeo, 2021.

44

[2] DavidJ. Aldous and Julian Shun. Connected Spatial Net-
works over Random Points and a Route-Length Statistic.
Statistical Science, 25(3):275-288, 2010.

[3] Martin Aumiiller, Erik Bernhardsson, and Alexander
Faithfull. ANN-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. Information
Systems, 87:101374, 2020.

[4] Marc Barthelemy. Spatial networks. Physics Reports,
499(1-3):1-101, Feb 2011.

[5] Marc Barthelemy. Morphogenesis of Spatial Networks.
Jan 2018.

[6] Maciej Besta, Dimitri Stanojevic, Johannes

de Fine Licht, Tal Ben-Nun, and Torsten Hoefler.

Graph processing on FPGAs: Taxonomy, survey,

challenges. CoRR, abs/1903.06697, 2019.

Siddharth Bhatia and Rajiv Kumar. Review of graph pro-

cessing frameworks. In IEEE International Conference

on Data Mining Workshops, pages 998—1005, 2018.

Guy E. Blelloch, Daniel Anderson, and Laxman Dhuli-

pala. ParlayLib - a toolkit for parallel algorithms on

shared-memory multicore machines. In ACM Sympo-
sium on Parallelism in Algorithms and Architectures,

page 507-509, 2020.

Angela Bonifati, George Fletcher, Jan Hidders, and

Alexandru Iosup. A Survey of Benchmarks for Graph-

Processing Systems, pages 163—186. 2018.

Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal,

and Frangois Taiani. Being prepared in a sparse world:

the case of KNN graph construction. In IEEE Interna-

tional Conference on Data Engineering, pages 241-252,

2016.

Maria R. Brito, Edgar L. Chavez, Adolfo J. Quiroz, and

Joseph E. Yukich. Connectivity of the mutual k-nearest-

neighbor graph in clustering and outlier detection. Statis-

tics & Probability Letters, 35(1):33-42, 1997.

Ricardo Campello, Davoud Moulavi, Arthur Zimek, and

Jorg Sander. Hierarchical density estimates for data

clustering, visualization, and outlier detection. ACM

Transactions on Knowledge Discovery from Data, pages

5:1-5:51, 2015.

Edgar Chdvez and Eric Sadit Tellez. Navigating

k-nearest neighbor graphs to solve nearest neighbor

searches. In Advances in Pattern Recognition, pages

270-280, 2010.

Daniel Chemla, Frédéric Meunier, and Roberto Wolfler

Calvo. Bike sharing systems: Solving the static rebal-

ancing problem. Discrete Optimization, 10(2):120-146,

2013.

Jie Chen, Haw-ren Fang, and Yousef Saad. Fast approxi-

mate kNN graph construction for high dimensional data

via recursive Lanczos bisection. Journal of Machine

Learning Research, 10(9), 2009.

Miguel E. Coimbra, Alexandre P. Francisco, and Luis

Veiga. An analysis of the graph processing landscape.

(7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Journal of Big Data, 8(1):55, 2021.

Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yan-
nis Mentekidis, Sumedh Ghaisas, and Shangtong Zhang.
mlpack 3: a fast, flexible machine learning library. Jour-
nal of Open Source Software, 3:726, 2018.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2008.

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.
Theoretically efficient parallel graph algorithms can be
fast and scalable. In ACM Symposium on Parallelism in
Algorithms and Architectures, pages 393—404, 2018.
Laxman Dhulipala, Guy E. Blelloch, and Julian Shun.
Low-latency graph streaming using compressed purely-
functional trees. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
918-934, 2019.

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blel-
loch, and Julian Shun. The graph based benchmark suite
(GBBS). In Proceedings of the 3rd Joint International
Workshop on Graph Data Management Experiences &
Systems and Network Data Analytics, 2020.

Wei Dong, Charikar Moses, and Kai Li. Efficient k-
nearest neighbor graph construction for generic simi-
larity measures. In International Conference on World
Wide Web, page 577-586, 2011.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters a density-based algorithm for discovering clus-
ters in large spatial databases with noise. In ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 226231, 1996.

Efi Fogel and Monique Teillaud. The computational
geometry algorithms library CGAL. ACM Commun.
Comput. Algebra, 49(1):10-12, June 2015.

Pasi Franti, Olli Virmajoki, and Ville Hautamaki. Fast
agglomerative clustering using a k-nearest neighbor
graph. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(11):1875-1881, 2006.

Jerome H. Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans-
actions on Mathematical Software, 3(3):209-226, 7
1976.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.
Fast approximate nearest neighbor search with the nav-
igating spreading-out graph. Proc. VLDB Endow.,
12(5):461-474, January 2019.

John C. Gower and Gavin J. S. Ross. Minimum span-
ning trees and single linkage cluster analysis. Journal
of the Royal Statistical Society: Series C (Applied Statis-
tics), 18(1):54-64, 1969.

Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu,
Xin-Yu Chen, Xiao-Fei Liao, and Hai Jin. A survey on

45

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

graph processing accelerators: Challenges and opportu-
nities. Journal of Computer Science and Technology,
34(2):339-371, 2019.

Charles R. Harris et al. Array programming with
NumPy. Nature, 585(7825):357-362, September 2020.
Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Out-
lier detection using k-nearest neighbour graph. In Inter-
national Conference on Pattern Recognition, volume 3,
pages 430—433, 2004.

Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Cal-
heiros, and Rajkumar Buyya. Scalable graph processing
frameworks: A taxonomy and open challenges. ACM
Comput. Surv., 51(3), June 2018.

Jerzy W. Jaromczyk and Godfried T. Toussaint. Relative
neighborhood graphs and their relatives. Proceedings
of the IEEFE, 80(9):1502-1517, 1992.

George Karypis, Eui-Hong Han, and Vipin Kumar.
Chameleon: Hierarchical clustering using dynamic mod-
eling. Computer, 32(8):68-75, 1999.

David G. Kirkpatrick and John D. Radke. A framework
for computational morphology. In Computational Ge-
ometry, volume 2 of Machine Intelligence and Pattern
Recognition, pages 217-248. 1985.

Ning Liu, Dong-sheng Li, Yi-ming Zhang, and Xiong-
Ive Li. Large-scale graph processing systems: a survey.
Frontiers of Information Technology & Electronic Engi-
neering, 21(3):384-404, 2020.

Malgorzata Luciiska and Stawomir T. Wierzchon. Spec-
tral clustering based on k-nearest neighbor graph. In
Computer Information Systems and Industrial Manage-
ment, pages 254-265, 2012.

Markus Maier, Matthias Hein, and Ulrike von Luxburg.
Optimal construction of k-nearest-neighbor graphs for
identifying noisy clusters. Theoretical Computer Sci-
ence, 410(19):1749-1764, 2009.

Yury A. Malkov and Dmitry A. Yashunin. Efficient
and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
42(4):824-836, 2020.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schiitze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

Robert Ryan McCune, Tim Weninger, and Greg Madey.
Thinking like a vertex: A survey of vertex-centric frame-
works for large-scale distributed graph processing. ACM
Comput. Surv., 48(2):25:1-25:39, October 2015.
Ulrich Meyer and Peter Sanders. A-stepping: a paralleliz-
able shortest path algorithm. J. Algorithms, 49(1):114—
152, 2003.

Nicholas Monath, Avinava Dubey, Guru Guruganesh,
Manzil Zaheer, Amr Ahmed, Andrew McCallum,
Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon
Tjanaka, Yuan Wang, and Yuchen Wu. Scalable

bottom-up hierarchical clustering.

arXiv:2010.11821, 2020.

Rodrigo Paredes and Edgar Chdvez. Using the k-nearest

neighbor graph for proximity searching in metric spaces.

In String Processing and Information Retrieval, pages

127-138, 2005.

Fabian Pedregosa et al. Scikit-learn: Machine learn-

ing in Python. Journal of Machine Learning Research,

12:2825-2830, 2011.

Benjamin Perret, Giovanni Chierchia, Jean Cousty, Sil-

vio J. Guimaraes, Yukiko Kenmochi, and Laurent Na-

jman. Higra: Hierarchical graph analysis. SoftwareX,

10:100335, 2019.

[47] Franco P. Preparata and Michael I. Shamos. Computa-
tional Geometry. Springer, 1990.

[48] John Radke and Anders Flodmark. The use of spatial
decompositions for constructing street centerlines. Geo-
graphic Information Sciences, 5(1):15-23, 1999.

[49] Thomas B. Sebastian and Benjamin B. Kimia. Metric-
based shape retrieval in large databases. In Proceedings
of the International Conference on Pattern Recognition
(ICPR), 2002.

[50] Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel

clique counting and peeling algorithms. arXiv preprint

arXiv:2002.10047, 2020.

Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin,

Ligang He, Bo Liu, and Qiang-Sheng Hua. Graph

processing on GPUs: A survey. ACM Comput. Surv.,

50(6):81:1-81:35, January 2018.

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman,

Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan

Simhadri, and Kanat Tangwongsan. Brief announce-

ment: the Problem Based Benchmark Suite. In ACM

Symposium on Parallelism in Algorithms and Architec-

tures, pages 68-70, 2012.

Julian Shun, Laxman Dhulipala, and Guy E. Blelloch.

Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In IEEE Data Compression Con-

ference, pages 403412, 2015.

[54] Amarnag Subramanya and Partha Pratim Talukdar.

Graph-Based Semi-Supervised Learning. Morgan &

Claypool Publishers, 2014.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vard-

han Simhadri, Ravishankar Krishnawamy, and Rohan

Kadekodi. Rand-NSG: Fast accurate billion-point near-

est neighbor search on a single node. In Conference on

Neural Information Processing Systems, pages 13748—

13758, 2019.

Joshua B. Tenenbaum, Vin de Silva, and John C. Lang-

ford. A global geometric framework for nonlinear di-

mensionality reduction. Science, 290(5500):2319-2323,

2000.

Godfried T. Toussaint and Constantin Berzan.

Proximity-graph instance-based learning, support

arXiv preprint

[44]

[45]

[46]

[51]

[52]

[53]

[55]

[56]

[57]

46

vector machines, and high dimensionality: An empirical
comparison. In Machine Learning and Data Mining in
Pattern Recognition, pages 222-236, 2012.

[58] Tom Tseng, Laxman Dhulipala, and Julian Shun. Par-
allel index-based structural graph clustering and its ap-
proximation. In ACM SIGMOD International Confer-
ence on Management of Data, 2021.

[59] Vijay V. Vazirani. Approximation Algorithms. Springer
Publishing Company, Incorporated, 2010.

[60] Remco C. Veltkamp. The y-neighborhood graph. Com-
putational Geometry, 1(4):227-246, 1992.

[61] Pauli Virtanen et al. SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nature Methods,

17(3):261-272, 2020.

Peng-Jun Wan, Grucia Cailinescu, Xiang-Yang Li, and

Ophir Frieder. Minimum-energy broadcasting in static

ad hoc wireless networks. Wireless Networks, 8(6):607—

617,2002.

Yiqgiu Wang, Yan Gu, and Julian Shun. Theoretically-

efficient and practical parallel DBSCAN. In ACM SIG-

MOD International Conference on Management of Data,

page 2555-2571, 2020.

Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. Fast

parallel algorithms for euclidean minimum spanning

tree and hierarchical spatial clustering. In ACM SIG-

MOD International Conference on Management of Data,

2021.

Peter Willett. Recent trends in hierarchic document

clustering: A critical review. Information Processing &

Management, 24(5):577-597, 1988.

Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Desh-

pande. Big graph analytics platforms. Foundations and

Trends in Databases, 7(1-2):1-195, 2017.

[62]

[63]

[64]

[65]

[66]

