A Top-Down Parallel Semisort

Yan Gu Julian Shun Yihan Sun Guy Blelloch

Carnegie Mellon University

key Value

o Input:

- An array of records with associated keys
- Assume keys can be hashed to the range $[n^k]$

o Goal:

• All records with equal keys should be adjacent

key Value

o Input:

- An array of records with associated keys
- Assume keys can be hashed to the range $[n^k]$

o Goal:

• All records with equal keys should be adjacent

key Value

o Input:

- An array of records with associated keys
- Assume keys can be hashed to the range [n^k]

o Goal:

- All records with equal keys should be adjacent
- Different keys are not necessarily sorted
- Records with equal keys do not need to be sorted by their values

key Value

o Input:

- An array of records with associated keys
- Assume keys can be hashed to the range [n^k]

o Goal:

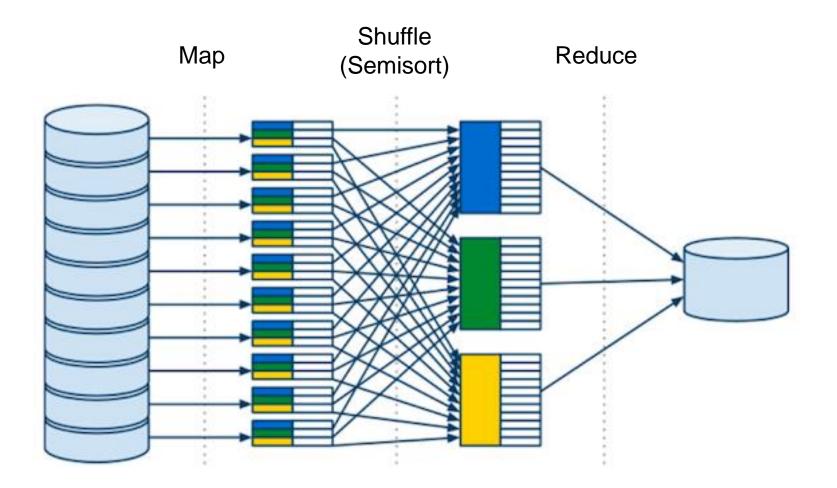
- All records with equal keys should be adjacent
- Different keys are not necessarily sorted
- Records with equal keys do not need to be sorted by their values

• The simulation of PRAM model – concurrent write [Valiant 1990]

- Key: memory addresses
- Value: operations

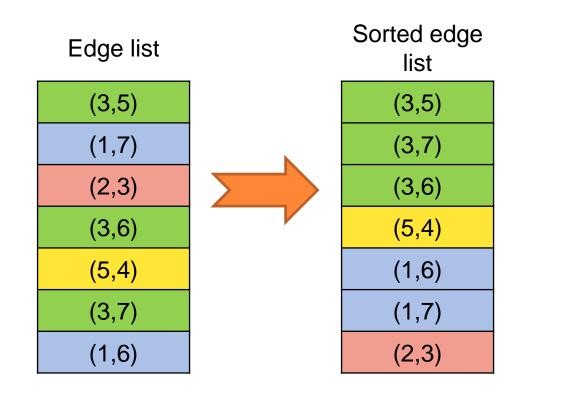
Thread	Concurrent writes	_	Thread	Sorted operations	Result	
1	a[3]=71		4	a[3]=10		
2	a[1]=99		1	a[3]=71	a[3]=71	
3	a[2]=19		6	a[3]=12		
4	a[3]=10		5	a[5]=50	a[5]=50	
5	a[5]=50		7	a[1]=16	0[1]_00	
6	a[3]=12		2	a[1]=99	a[1]=99	
7	a[1]=16		3	a[2]=19	a[2]=19	

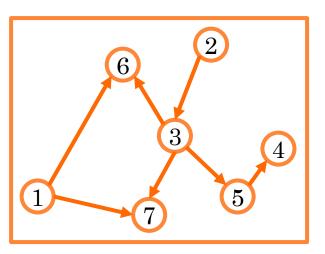
• The map-(semisort-)reduce paradigm



The map-(semisort-)reduce paradigm

Generate adjacency array for a graph





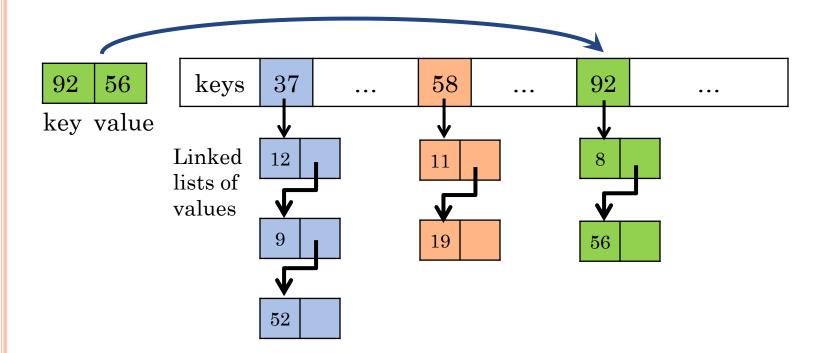
The map-(semisort-)reduce paradigm

Generate adjacency array for a graph

• Other applications:

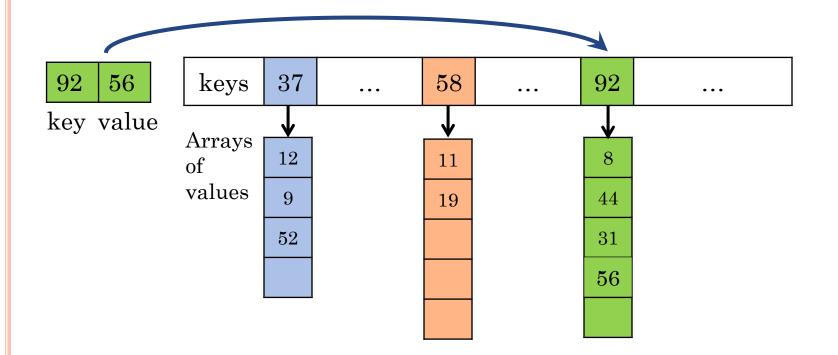
- In database, the relational join operation
- Gather words that differ by a deletion in edit-distance application
- Collect shared edges based on endpoints in Delaunay triangulation
- Etc.

Attempts – Sequentially Hash Table With Open Addressing

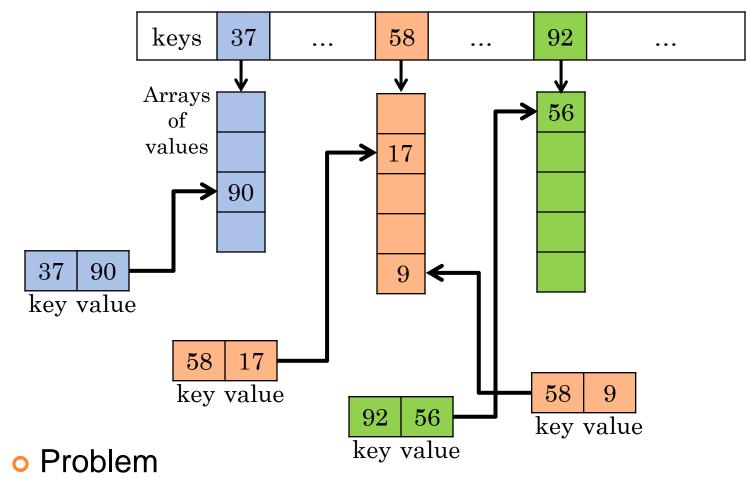


- Problem:
 - Maintaining linked lists in parallel can be hard

Attempts – Sequentially Pre-allocated array



Attempts - Parallelized Pre-allocated array



Need to pre-count the number of each key

Attempts – In parallel

Comparison-based sort

- $O(n \log n)$ work
- Not work-efficient

 Radix-sort (probably the best work-efficient option previously)

- $O(n^{\epsilon})$ depth
- Not highly-parallelized

Attempts – In parallel

R&R integer sort [Rajasekaran and Reif 1989]: sort n records with keys in the range [n] in O(n) work and O(log n) depth

- Linear work and logarithmic depth
- Should map keys to range [n]
- Too much global data movement practically inefficient
 - Hashing and packing 1 time
 - Random radix sort 1 time
 - Deterministic radix sort 2 times

How to design an efficient semisort?

• Theoretically efficient:

- Linear work
- Logarithmic depth
- Practically efficient:
 - Less data communication
 - Cache-friendly
- Space efficient:
 - Linear space

Our Top-Down Parallel Semisort Algorithm

Key insight: estimate key count from samples

 Once the count of each key is known, we can preallocate an array for each key

- The exact number is hard to compute estimate the upper bound by sampling
 - Those appearing many times: we could make reasonable estimations from the sample
 - Those with few samples: hard to estimate precisely
 - Solution: Treat "heavy" keys and "light" keys differently

Our parallel semisort algorithm

- o 1. Select a sample S of keys and sort it
 - Sample rate $\Theta(1/\log n)$
- 2. Partition S into heavy keys and light keys
 - Heavy: appears = Ω(log n) times; will be assigned an individual bucket
 - Light: appears = $O(\log n)$ times. We evenly partition the hash range to $n/\log^2 n$ buckets for them
- 3. Scatter each record into its associated bucket
 - The only global data communication
- o 4. Semisort light key buckets
 - Performed locally

• 5. Pack and output

Heavy vs. Light...Why?

- [Rajasekaran and Reif 1989]If the records are sampled with probability $p = 1/\log n$, and for a key *i* which appears a_i times in the original array, and c_i times in the sample:
 - $c_i = \Omega(\log n)$, then $a_i = \Theta(c_i \log n)$ w.h.p.
 - $c_i = O(\log n)$, then $a_i = O(\log^2 n)$ w.h.p.

(Can be proved using Chernoff bounds)

Estimate upper bounds for the counts a_i

- Key insight: if the records are sampled with probability $p = 1/\log n$, and key *i* has:
 - $c_i = \Omega(\log n)$ samples, then $a_i = \Theta(c_i \log n)$ w.h.p.
 - $c_i = O(\log n)$ samples, then $a_i = O(\log^2 n)$ w.h.p.

• $u_i = c' \max(\log^2 n, c_i \log n)$

 c' is a sufficiently large constant to provide the high probability bound

Estimate upper bounds for the counts a_i

• Key insight: if the records are sampled with probability $p = 1/\log n$, and key *i* has:

- $c_i = \Omega(\log n)$ samples, then $a_i = \Theta(c_i \log n)$ w.h.p.
- $c_i = O(\log n)$ samples, then $a_i = O(\log^2 n)$ w.h.p.

• Extreme case: all samples are of the same key

•
$$c_i = \frac{n}{\log n} \Rightarrow u_i = O(n)$$

•
$$c_i = 0 \qquad \Rightarrow u_i = O(\log^2 n)$$

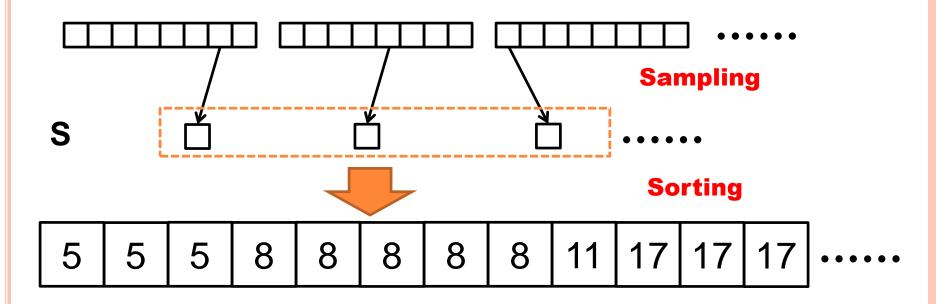
• Require keys to be in range $[n/\log^2 n]$

Solution: combine light keys

• evenly partition the hash range to $n/\log^2 n$ intervals as buckets

Phase 1: Sampling and sorting

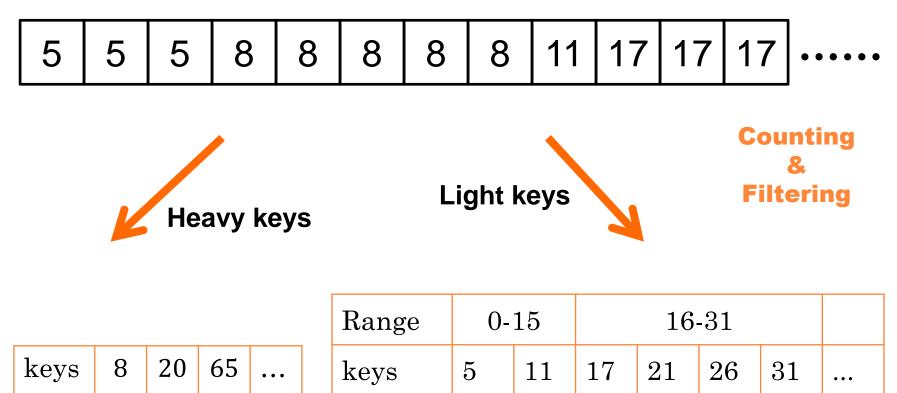
1. Select a sample *S* of keys with probability $p = \Theta(1/\log n)$ 2. Sort *S*



(Counting)

Phase 2: Array Construction

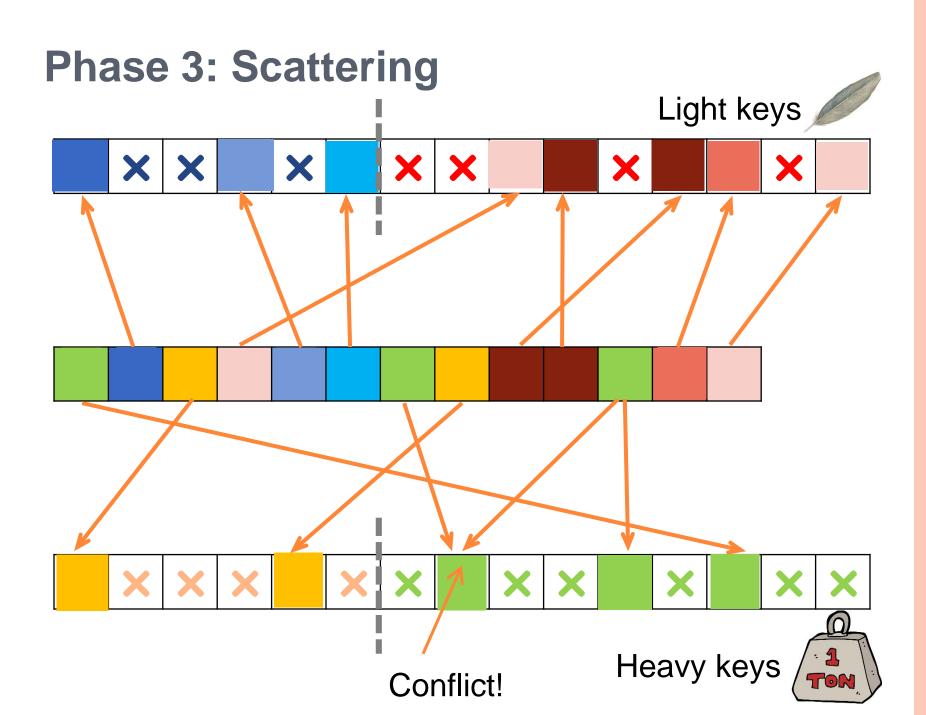
Sorted samples:

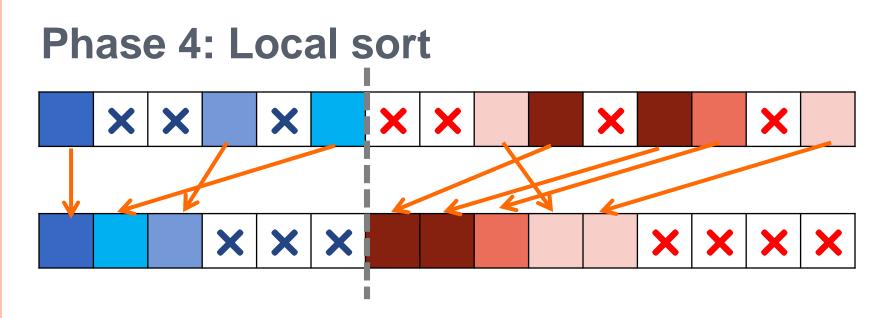


Phase 2: Array Construction

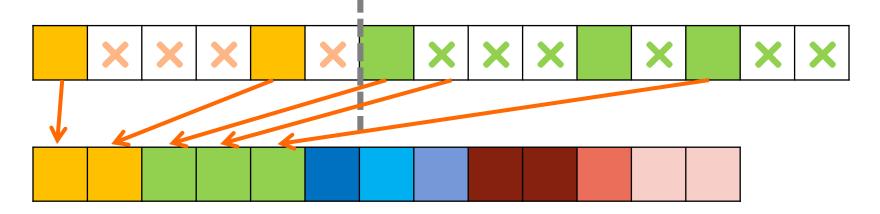
Heavy Keys					
keys	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ₃	• • •	
# samples	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	• • •	
	•	•	•		
Array length	$f(c_1)$	$f(c_2)$	$f(c_3)$		

Light Keys										
keys	k'_1	k'2	k'3	k'_4	k'_{5}	k'_6	k'_7	k' ₈	k'9	•••
# samples	<i>c</i> ′ ₁	<i>c</i> ′ ₂	<i>c</i> ′ ₃	<i>c</i> ′ ₄	<i>c</i> ′ ₅	c′ ₆	<i>c</i> ′ ₇	<i>c</i> ′ ₈	c′9	•••
Array length	$f(c'_1 +$	⊦ c′ ₂)	$f(c'_3 + \dots + c'_6)$)	$f(c'_7 + c'_8 + c'_9)$				





Phase 5: Packing



Size Estimation for Arrays - High Probability

• Now consider an array that has *s* samples. We define the following size-estimation function:

$$f(s) = \left(s + c \ln n + \sqrt{c^2 \ln^2 n + 2sc \ln n}\right)/p$$

where $p = \Theta\left(\frac{1}{\log n}\right)$ is the sampling probability and *c* is a constant, to be an upper bound of the size of the array

 Lemma 1: If there are s samples of an array, the probability that number of records is more than f(s) is at most n^{-c}

Size estimation for arrays - Linear Space in Expectation $f(s) = (s + c \ln n + \sqrt{c^2 \ln^2 n + 2sc \ln n})/p$

- Lemma 1: If there are s samples of an array, the probability that number of records is more than f(s) is at most n^{-c}
- Corollary 1: The probability that f gives an upper bound on all buckets is at least $1 - n^{-c+1}/\log^2 n$

• Lemma 2: $\sum_{i} f(s_i) = \Theta(n)$ holds in expectation

Comparison with R&R integer sort

o R&R algorithm:

- Preprocessing: hashing and packing global data movement
- Three times bottom-up radix sort global data movement

• Our parallel semisort:

- Sample and sort on a small set
- Bucket construction more about calculations
- Scatter: the only global data communication
- Local sort: performed locally
- Pack: performed locally

Experiments

Experimental setup

 Experiments are run on a 40-core (with 2-way HT, 40h) machine with 2.4GHz Intel 10-core E7-8879 Xeon processors, with a 1066MHz bus and 30MB L3 cache

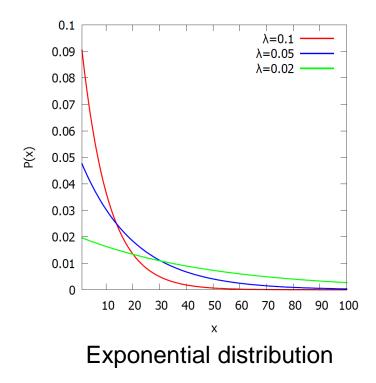
- Our code are compiled with g++ 4.8.0 with -02 flag, and parallelized with Cilk+, which is supported by g++
- We use parallel hash table with linear probing [Shun and Blelloch 2014]
- We compare to the parallel STL sort [Singler et al. 2007], parallel radix sort and sample sort from Problem Based Benchmark Suite [Shun et al. 2012]

The parallel semisort algorithm

	Notation	Value	
Array length	n	$10^7 - 10^9$	
Hashed key range	n^k	2 ⁶³	
Sample rate	$p = \Theta\left(\frac{1}{\log n}\right)$	$\frac{1}{16}$	
Threshold to distinguish heavy keys from light keys	$\Omega(\log n)$	16	
# buckets for light key	$\Theta\left(\frac{n}{\log^2 n}\right)$	2 ¹⁶	

Input distribution

- Uniform distribution (parameter: m. range of integers are from [m])
- Exponential distribution (parameter: λ . mean $1/\lambda$, variance $1/\lambda^2$)

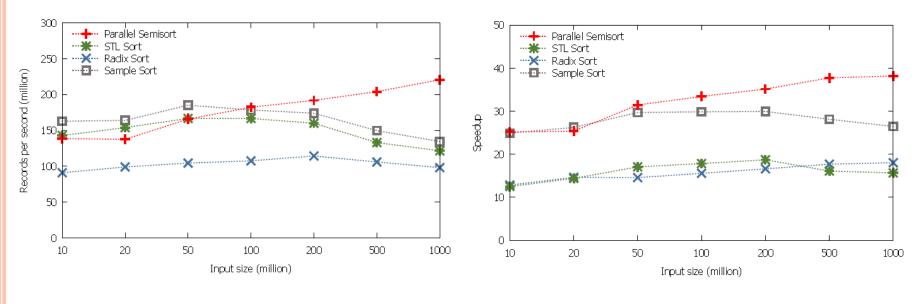


Input distribution

- The different distributions and parameters are used to control the ratio of heavy keys.
- Uniform distribution (parameter: m. range of integers are from [m])
- Exponential distribution (parameter: λ . mean $1/\lambda$, variance $1/\lambda^2$)
- Two representative distributions:
 - Uniform distribution with m = n (0% heavy keys)
 - Exponential distribution with $\lambda = n/1000$ (70-80% heavy keys)

Efficiency & Scalability Our parallel semisort outperforms STL sort, sample sort and radix sort.

- Number of threads: 40 cores with hyperthreading
- Array length: 10⁸
- o Distribution: exponential

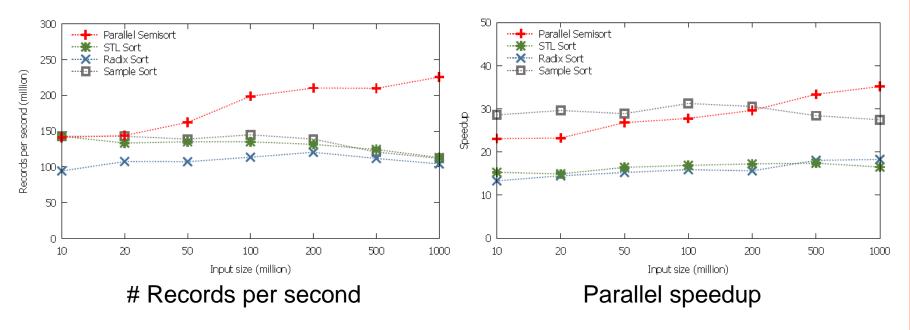


Records per second

Parallel speedup

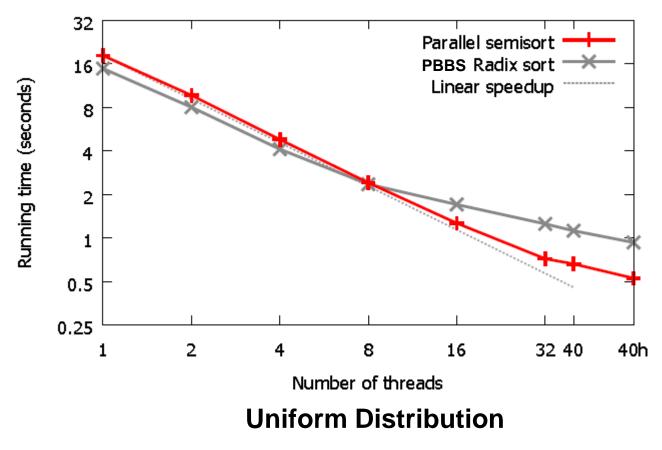
Efficiency & Scalability with input size Our parallel semisort outperforms STL sort, sample sort and radix sort.

- Number of threads: 40 cores with hyperthreading
- Array length: 10⁸
- Distribution: uniform



Parallel Performance Linear speedup

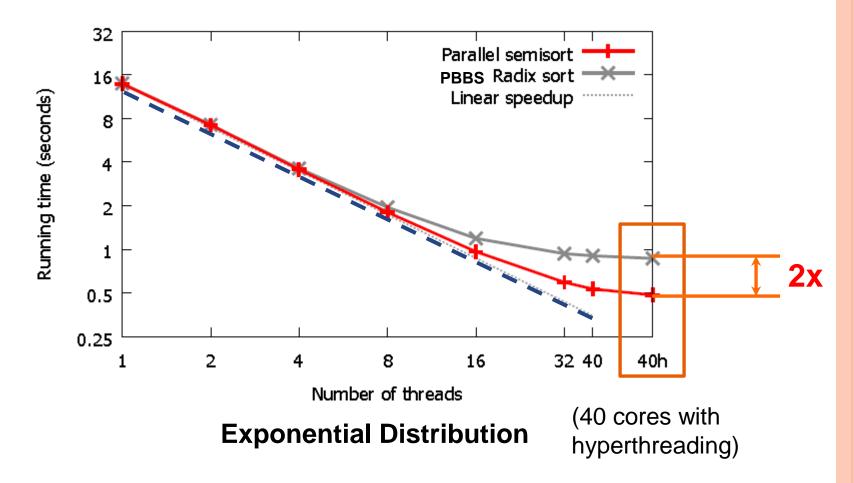
• PBBS radix sort [Shun et al 2012]



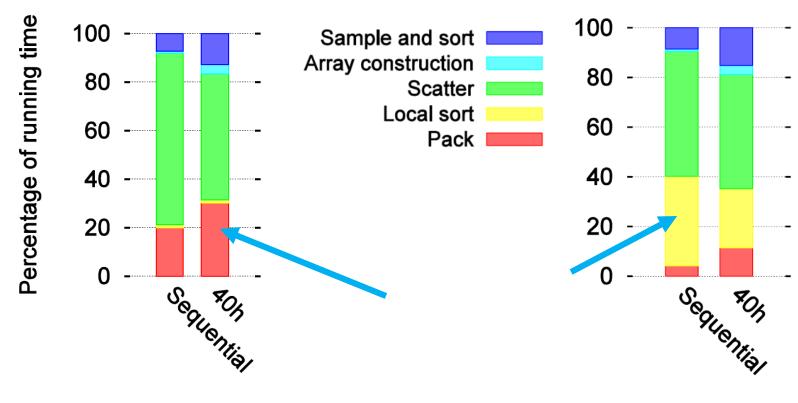
- Radix sort proposed in [Polychroniou and Ross 2014]
 - Crashed on exponential distribution

Parallel performance Linear speedup

- We show the running time of our algorithm and the radix sort with varying number of threads
- The input contains 10⁸ records



Breakdown of running time



Exponential

Uniform

Other experiments -The stabability

 We also have more experiments on testing the stability with different distributions

- Three different distributions
- 17 cases in total

• We refer you to our paper to see the details.

Conclusion

Conclusion

- We introduced a parallel algorithm for semisorting that is:
 - **Theoretically efficient**: requires linear work and space, and logarithmic depth.
 - Practically efficient: achieves good parallel speedup on various input distributions and input size, and outperforms a similarly-optimized radix sort and other commonly-used sorts.

Thank you.