
Yan Gu

Julian Shun

Yihan Sun

Guy Blelloch

Carnegie Mellon University

A Top-Down Parallel Semisort

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

key 45 12 45 61 28 61 61 45 28 45

Value 2 5 3 9 5 9 8 1 7 5

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

key 12 61 61 61 45 45 45 45 28 28

Value 5 8 9 9 2 5 1 3 7 5

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

 Different keys are not necessarily sorted

 Records with equal keys do not need to be sorted by

their values

key 45 45 45 45 12 61 61 61 28 28

Value 2 5 1 3 5 8 9 9 7 5

What is semisort?

 Input:

 An array of records with associated keys

 Assume keys can be hashed to the range [𝑛𝑘]

Goal:

 All records with equal keys should be adjacent

 Different keys are not necessarily sorted

 Records with equal keys do not need to be sorted by

their values

key 45 45 45 45 12 61 61 61 28 28

Value 1 5 3 2 5 8 9 9 7 5

Why is parallel semisort important?

 The simulation of PRAM model – concurrent write

[Valiant 1990]

 Key: memory addresses

 Value: operations

Thread
Concurrent

writes
Thread

Sorted

operations
Result

1 a[3]=71 4 a[3]=10

a[3]=712 a[1]=99 1 a[3]=71

3 a[2]=19 6 a[3]=12

4 a[3]=10 5 a[5]=50 a[5]=50

5 a[5]=50 7 a[1]=16
a[1]=99

6 a[3]=12 2 a[1]=99

7 a[1]=16 3 a[2]=19 a[2]=19

Why is parallel semisort important?

 The map-(semisort-)reduce paradigm

Map
Shuffle

(Semisort) Reduce

Why is parallel semisort important?

 The map-(semisort-)reduce paradigm

 Generate adjacency array for a graph

Edge list
Sorted edge

list

(3,5) (3,5)

(1,7) (3,7)

(2,3) (3,6)

(3,6) (5,4)

(5,4) (1,6)

(3,7) (1,7)

(1,6) (2,3)

1

2

3
4

5

6

7

Why is parallel semisort important?

 The map-(semisort-)reduce paradigm

 Generate adjacency array for a graph

 Other applications:

 In database, the relational join operation

 Gather words that differ by a deletion in edit-distance

application

 Collect shared edges based on endpoints in Delaunay

triangulation

 Etc.

Attempts – Sequentially

Hash Table With Open Addressing

 Problem:

 Maintaining linked lists in parallel can be hard

keys 37 … 58 … 92 …

12

9

52

92 56

11

19

8

key value

Linked

lists of

values

56

Attempts – Sequentially

Pre-allocated array

12

9

52

92 56

11

19

8

44

31

56

keys 37 … 58 … 92 …

key value
Arrays

of

values

Attempts - Parallelized

Pre-allocated array

keys 37 … 58 … 92 …

Arrays

of

values

 Problem

 Need to pre-count the number of each key

58 17

92 56
58 9key value

key value
key value

17

56

937 90

key value

90

Attempts – In parallel

 Comparison-based sort

 𝑂(nlog 𝑛) work

 Not work-efficient

 Radix-sort (probably the best work-efficient option

previously)

 𝑂(𝑛𝜖) depth

 Not highly-parallelized

☹

☹

 R&R integer sort [Rajasekaran and Reif 1989]: sort 𝑛
records with keys in the range [𝑛] in 𝑂(𝑛) work and

𝑂 log 𝑛 depth

 Linear work and logarithmic depth

 Should map keys to range [𝑛]

 Too much global data movement – practically inefficient

 Hashing and packing – 1 time

 Random radix sort – 1 time

 Deterministic radix sort – 2 times

Attempts – In parallel

☹

 Theoretically efficient:

 Linear work

 Logarithmic depth

 Practically efficient:

 Less data communication

 Cache-friendly

 Space efficient:

 Linear space

How to design an efficient semisort?

Our Top-Down Parallel Semisort

Algorithm

 Once the count of each key is known, we can pre-

allocate an array for each key

 The exact number is hard to compute - estimate the

upper bound by sampling

 Those appearing many times: we could make

reasonable estimations from the sample

 Those with few samples: hard to estimate precisely

 Solution: Treat “heavy” keys and “light” keys

differently

Key insight:

estimate key count from samples

 1. Select a sample 𝑆 of keys and sort it
 Sample rate Θ(1/ log 𝑛)

 2. Partition 𝑆 into heavy keys and light keys
 Heavy: appears = Ω(log 𝑛) times; will be assigned an individual bucket

 Light: appears = 𝑂 log 𝑛 times. We evenly partition the hash range to
𝑛/ log2 𝑛 buckets for them

 3. Scatter each record into its associated bucket
 The only global data communication

 4. Semisort light key buckets
 Performed locally

 5. Pack and output

Our parallel semisort algorithm

Heavy vs. Light…Why?

 [Rajasekaran and Reif 1989]If the records are sampled

with probability 𝑝 = 1/ log 𝑛, and for a key 𝑖 which

appears 𝑎𝑖 times in the original array, and 𝒄𝒊 times in the

sample:

 𝑐𝑖 = Ω(log 𝑛) , then 𝑎𝑖 = Θ 𝑐𝑖 log 𝑛 w.h.p.

 𝑐𝑖 = 𝑂(log 𝑛) , then 𝑎𝑖 = 𝑂 log2 𝑛 w.h.p.

(Can be proved using Chernoff bounds)

Estimate upper bounds for the counts 𝒂𝒊

 Key insight: if the records are sampled with probability

𝑝 = 1/ log 𝑛, and key 𝑖 has:

 𝑐𝑖 = Ω(log 𝑛) samples, then 𝑎𝑖 = Θ 𝑐𝑖 log 𝑛 w.h.p.

 𝑐𝑖 = 𝑂(log 𝑛) samples, then 𝑎𝑖 = 𝑂 log2 𝑛 w.h.p.

 𝑢𝑖 = 𝑐′ max(log
2 𝑛 , 𝑐𝑖 log 𝑛)

 𝑐′ is a sufficiently large constant to provide the high probability

bound

Estimate upper bounds for the counts 𝒂𝒊

 Key insight: if the records are sampled with probability

𝑝 = 1/ log 𝑛, and key 𝑖 has:

 𝑐𝑖 = Ω(log 𝑛) samples, then 𝑎𝑖 = Θ 𝑐𝑖 log 𝑛 w.h.p.

 𝑐𝑖 = 𝑂(log 𝑛) samples, then 𝑎𝑖 = 𝑂 log2 𝑛 w.h.p.

 Extreme case: all samples are of the same key

 𝑐𝑖 =
𝑛

log 𝑛
⇒ 𝑢𝑖 = 𝑂(𝑛)

 𝑐𝑖 = 0 ⇒ 𝑢𝑖 = 𝑂(log
2 𝑛)

 Require keys to be in range [𝑛/ log2 𝑛]

 Solution: combine light keys

 evenly partition the hash range to 𝑛/ log2 𝑛 intervals as buckets

Phase 1: Sampling and sorting

……

5 5 5 8 8 8 8 8 17 17 ……11 17

1. Select a sample 𝑆 of keys with probability 𝑝 = Θ(1/ log 𝑛)
2. Sort 𝑆

……S

Sampling

(Counting)

Sorting

Phase 2: Array Construction

5 5 5 8 8 8 8 8 17 17 ……11 17

Counting

&

Filtering

keys 8 20 65 …

Range 0-15 16-31

keys 5 11 17 21 26 31 ...

Heavy keys
Light keys

Sorted samples:

Phase 2: Array Construction

Heavy Keys

keys 𝑘1 𝑘2 𝑘3 …

samples 𝑐1 𝑐2 𝑐3 …

Array

length
𝑓(𝑐1) 𝑓(𝑐2) 𝑓(𝑐3) …

Light Keys

keys 𝑘′1 𝑘′2 𝑘′3 𝑘′4 𝑘′5 𝑘′6 𝑘′7 𝑘′8 𝑘′9 …

samples 𝑐′1 𝑐′2 𝑐′3 𝑐′4 𝑐′5 𝑐′6 𝑐′7 𝑐′8 𝑐′9 …

Array

length
𝑓(𝑐′1 + 𝑐′2) 𝑓(𝑐′3 +⋯+ 𝑐′6) 𝑓(𝑐′7 + 𝑐′8 + 𝑐′9) …

Phase 3: Scattering

× × × × × × × × × × × × × × ×

× × × × × × × × × × × × × × ×

Conflict!

Light keys

Heavy keys

× × × × × × ×

× × × × × × ×

× × × × × × × × × ×

Phase 4: Local sort

Phase 5: Packing

Size Estimation for Arrays

- High Probability
 Now consider an array that has 𝑠 samples. We define

the following size-estimation function:

where 𝑝 = Θ
1

log 𝑛
is the sampling probability and 𝑐 is a

constant, to be an upper bound of the size of the array

 Lemma 1: If there are 𝑠 samples of an array, the

probability that number of records is more than 𝑓(𝑠) is at

most 𝑛−𝑐

𝒇 𝒔 = 𝒔 + 𝒄 𝒍𝒏 𝒏 + 𝒄𝟐 𝒍𝒏𝟐 𝒏 + 𝟐𝒔𝒄 𝒍𝒏𝒏 /𝒑

Size estimation for arrays

- Linear Space in Expectation

 Lemma 1: If there are 𝑠 samples of an array, the

probability that number of records is more than 𝑓(𝑠) is at

most 𝑛−𝑐

 Corollary 1: The probability that 𝑓 gives an upper bound

on all buckets is at least 1 − 𝑛−𝑐+1/log2𝑛

 Lemma 2: 𝒊𝒇 𝒔𝒊 = 𝚯 𝒏 holds in expectation

𝒇 𝒔 = 𝒔 + 𝒄 𝒍𝒏𝒏 + 𝒄𝟐 𝒍𝒏𝟐 𝒏 + 𝟐𝒔𝒄 𝒍𝒏𝒏 /𝒑

 R&R algorithm:

 Preprocessing: hashing and packing – global data movement

 Three times bottom-up radix sort – global data movement

 Our parallel semisort:

 Sample and sort – on a small set

 Bucket construction – more about calculations

 Scatter: the only global data communication

 Local sort: performed locally

 Pack: performed locally

Comparison with R&R integer sort

Experiments

Experimental setup

 Experiments are run on a 40-core (with 2-way HT, 40h)

machine with 2.4GHz Intel 10-core E7-8879 Xeon

processors, with a 1066MHz bus and 30MB L3 cache

 Our code are compiled with g++ 4.8.0 with –O2 flag,

and parallelized with Cilk+, which is supported by g++

 We use parallel hash table with linear probing [Shun

and Blelloch 2014]

 We compare to the parallel STL sort [Singler et al.

2007], parallel radix sort and sample sort from Problem

Based Benchmark Suite [Shun et al. 2012]

The parallel semisort algorithm

Notation Value

Array length 𝑛 107 − 109

Hashed key

range
𝑛𝑘 263

Sample rate 𝑝 = Θ
1

log 𝑛

1

16

Threshold to

distinguish

heavy keys from

light keys

Ω(log 𝑛) 16

buckets for

light key
Θ

𝑛

log2 𝑛
216

Input distribution

Uniform distribution (parameter: 𝑚. range of

integers are from 𝑚)

Exponential distribution (parameter: 𝜆. mean

1/𝜆, variance 1/𝜆2)

Exponential distribution

Input distribution

 The different distributions and parameters are used to

control the ratio of heavy keys.

 Uniform distribution (parameter: 𝑚. range of integers

are from 𝑚)

 Exponential distribution (parameter: 𝜆. mean 1/𝜆,

variance 1/𝜆2)

 Two representative distributions:

 Uniform distribution with m = 𝑛 (0% heavy keys)

 Exponential distribution with 𝜆 = 𝑛/1000 (70-80% heavy keys)

Efficiency & Scalability
Our parallel semisort outperforms STL sort,

sample sort and radix sort.

Records per second Parallel speedup

 Number of threads: 40 cores with hyperthreading

 Array length: 108

 Distribution: exponential

Efficiency & Scalability with input size
Our parallel semisort outperforms STL sort, sample

sort and radix sort.

Records per second Parallel speedup

 Number of threads: 40 cores with hyperthreading

 Array length: 108

 Distribution: uniform

Parallel Performance

Linear speedup
 PBBS radix sort [Shun et al 2012]

 Radix sort proposed in [Polychroniou and Ross 2014]

 Crashed on exponential distribution

Uniform Distribution

PBBS

Parallel performance

Linear speedup
 We show the running time of our algorithm and the radix sort with

varying number of threads

 The input contains 108 records

Exponential Distribution
(40 cores with

hyperthreading)

PBBS

2x

Breakdown of running time

Exponential Uniform

 We also have more experiments on testing the

stability with different distributions

 Three different distributions

 17 cases in total

 We refer you to our paper to see the details.

Other experiments -

The stabability

Conclusion

Conclusion

 We introduced a parallel algorithm for semisorting

that is:

 Theoretically efficient: requires linear work and

space, and logarithmic depth.

 Practically efficient: achieves good parallel

speedup on various input distributions and input

size, and outperforms a similarly-optimized radix

sort and other commonly-used sorts.

Thank you.

